Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>360+57<10x<58x4+59x5
=>417<10x<527
\(\Leftrightarrow10x\in\left\{420;430;440;...;510;520\right\}\)
hay \(x\in\left\{42;43;44;...;51;52\right\}\)
Mẫu số chung : \(LCM\left(60;120;36;90;72\right)=360\)
Quy đồng mẫu số :
\(\dfrac{360}{360}+\dfrac{-6}{360}+\dfrac{57}{360}< \dfrac{10\cdot x}{360}< \dfrac{232}{360}+\dfrac{295}{360}+\dfrac{-6}{360}\)
\(\Leftrightarrow\dfrac{411}{360}< \dfrac{10\cdot x}{360}< \dfrac{521}{360}\)
Vậy tập hợp các giá trị của x là \(x=\left\{42;43;44;45;46;47;48;49;50;51;52\right\}\)
Ta có:
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(\Rightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
Nhận xét:
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{1}{6}\)
\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{3}{5}\)
\(\Rightarrow S>\frac{3}{5}\left(1\right)\)
Lại có:
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
Nhận xét:
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{1}{3}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{5}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{4}{5}\)
\(\Rightarrow S< \frac{4}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\frac{3}{5}< S< \frac{4}{5}\) (Đpcm)
a: \(\Leftrightarrow70+18< x< 120+126+70\)
=>88<x<316
hay \(x\in\left\{89;90;...;315\right\}\)
b: \(\Leftrightarrow-\dfrac{9}{3}< x< \dfrac{8}{5}+\dfrac{9}{5}=\dfrac{17}{5}\)
=>-3<x<3,4
hay \(x\in\left\{-2;-1;0;1;2;3\right\}\)
\(-\dfrac{1}{3}< \dfrac{A}{36}< \dfrac{B}{18}< -\dfrac{1}{4}\)
<=>\(-\dfrac{12}{36}< \dfrac{A}{36}< \dfrac{2B}{36}< -\dfrac{9}{36}\)
<=> -12 < x + 1 < 2(2 - y) < -9
<=> -12 < x + 1 < 4 - 2y < -9
=> x + 1 = -11 => x = -12
4 - 2y = -10 => y = 7
Vậy (x; y) = (-12; 7)
−13<A36<B18<−14−13<A36<B18<−14
<=>−1236<A36<2B36<−936−1236<A36<2B36<−936
<=> -12 < x + 1 < 2(2 - y) < -9
<=> -12 < x + 1 < 4 - 2y < -9
=> x + 1 = -11 => x = -12
4 - 2y = -10 => y = 7
Vậy (x; y) = (-12; 7)
a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}< x< \dfrac{1}{48}-\dfrac{1}{16}+\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{6}{12}-\dfrac{4}{12}-\dfrac{3}{12}< x< \dfrac{1}{48}-\dfrac{3}{48}+\dfrac{8}{48}\)
\(\Leftrightarrow\dfrac{-1}{12}< x< \dfrac{1}{8}\)
\(\Leftrightarrow-2< 24x< 3\)
=>x=0
b: \(\Leftrightarrow\dfrac{9-10}{12}< \dfrac{x}{12}< 1-\dfrac{8-3}{12}=\dfrac{7}{12}\)
=>-1<x<7
hay \(x\in\left\{0;1;2;3;4;5;6\right\}\)
a: \(\dfrac{x+2}{27}=\dfrac{x}{-9}\)
=>x+2=-3x
=>4x=-2
hay x=-1/2
b: \(\dfrac{-7}{x}=\dfrac{21}{34-x}\)
=>-7(34-x)=21x
=>34-x=-3x
=>2x=-34
hay x=-17
c: \(\dfrac{-8}{15}< \dfrac{x}{40}< \dfrac{-7}{15}\)
\(\Leftrightarrow-64< 3x< -56\)
hay \(x\in\left\{-21;-20;-19\right\}\)
d: \(\dfrac{-1}{2}< \dfrac{x}{18}< \dfrac{-1}{3}\)
=>-9<x<-6
hay \(x\in\left\{-8;-7\right\}\)
a , \(\left(\dfrac{-2}{3}+1\dfrac{1}{4}-\dfrac{1}{6}\right):\dfrac{-24}{10}\)
=\(\left(\dfrac{-2}{3}+\dfrac{5}{4}-\dfrac{1}{6}\right):\dfrac{-12}{5}\)
=\(\left(\dfrac{-8}{12}+\dfrac{15}{12}-\dfrac{2}{12}\right)\cdot\dfrac{-5}{12}\)
=\(\dfrac{5}{12}\cdot\dfrac{-5}{12}=\dfrac{-25}{144}\)
b , \(\dfrac{13}{15}\cdot0,25\cdot3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right)1\dfrac{23}{24}\)
=\(\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right)\cdot\dfrac{57}{24}\)
=\(\dfrac{13}{20}-\dfrac{47}{60}\cdot\dfrac{57}{24}\)
=\(\dfrac{13}{20}-\dfrac{893}{480}=\dfrac{312}{480}-\dfrac{893}{480}=\dfrac{-581}{480}\)
c , \(\left(\dfrac{12}{32}+\dfrac{5}{-20}-\dfrac{10}{24}\right):\dfrac{2}{3}\)
=\(\left(\dfrac{180}{480}-\dfrac{120}{480}-\dfrac{200}{480}\right)\cdot\dfrac{3}{2}\)
= \(\dfrac{-7}{24}\cdot\dfrac{3}{2}=\dfrac{-7}{16}\)
d , \(4\dfrac{1}{2}:\left(2,5-3\dfrac{3}{4}\right)+\left(-\dfrac{1}{2}\right)\)
=\(\dfrac{9}{2}:\left(\dfrac{5}{2}-\dfrac{15}{4}\right)-\dfrac{1}{2}\)
=\(\dfrac{9}{2}:\dfrac{-5}{4}-\dfrac{1}{2}=\dfrac{9}{2}\cdot\dfrac{-4}{5}-\dfrac{1}{2}=\dfrac{-18}{5}-\dfrac{1}{2}=\dfrac{-41}{10}\)
e , \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)=\dfrac{-5}{2}\left(\dfrac{3}{4}-\dfrac{2}{4}\right)\)
=\(\dfrac{-5}{2}:\dfrac{1}{4}=\dfrac{-5}{2}\cdot4=-10\)