K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019
https://i.imgur.com/KDh9wO3.jpg
26 tháng 7 2019
https://i.imgur.com/xIm9gb3.jpg
NV
2 tháng 1 2022

\(1+2cosx=2\Leftrightarrow cosx=\dfrac{1}{2}\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)

14 tháng 9 2021

\(y=\dfrac{cotx}{cosx-1}\)

Đk:\(cosx-1\ne0\Leftrightarrow cosx\ne1\)\(\Leftrightarrow x\ne k\pi,k\in Z\)

\(D=R\backslash\left\{k\pi;k\in Z\right\}\)

Ý C

14 tháng 9 2021

Lê Thị Thục Hiền CTV

\(cosx=1\Leftrightarrow x=k2\pi\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(f'\left(x\right)=2x+3sin^2\left(x\right)cos\left(x\right)\\ \Rightarrow f'\left(\dfrac{\pi}{2}\right)=\pi\)

\(\Rightarrow\) Chọn A.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)      

x

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{2}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

\(y = \cot x\)

\(\sqrt 3 \)

1

0

-1

\( - \sqrt 3 \)

b)     Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; cotx) với \(x \in \left( {0;\pi } \right)\) và nối lại ta được đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) (Hình 31)

c)     Làm tương tự như trên đối với các khoảng \(\left( {\pi ;2\pi } \right),\left( { - \pi ;0} \right),\left( { - 2\pi ; - \pi } \right),....\)ta có đồ thị hàm số \(y = \cot x\)trên E được biểu diễn ở Hình 32.

 

NV
20 tháng 10 2019

Nhận thấy \(cosx-0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(tan^2x+\left(\sqrt{3}-1\right)tanx-\sqrt{3}=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

Cho hàm số \(y = \sin x\)a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:x\( - \pi \)\( - \frac{{5\pi }}{6}\)\( - \frac{\pi }{2}\)\( - \frac{\pi }{6}\)0\(\frac{\pi }{6}\)\(\frac{\pi }{2}\)\(\frac{{5\pi }}{6}\)\(\pi \)\(y = \sin x\)?????????b)    Trong mặt phẳng Oxy, hãy biểu diễn các điểm \(\left( {x;y} \right)\) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\sin x} \right)\) với...
Đọc tiếp

Cho hàm số \(y = \sin x\)

a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

x

\( - \pi \)

\( - \frac{{5\pi }}{6}\)

\( - \frac{\pi }{2}\)

\( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{2}\)

\(\frac{{5\pi }}{6}\)

\(\pi \)

\(y = \sin x\)

?

?

?

?

?

?

?

?

?

b)    Trong mặt phẳng Oxy, hãy biểu diễn các điểm \(\left( {x;y} \right)\) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) với nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) (Hình 24).

 

c)     Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\), ...ta có đồ thị hàm số \(y = \sin x\)trên R được biểu diễn ở Hình 25.

 

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)

x

\( - \pi \)

\( - \frac{{5\pi }}{6}\)

\( - \frac{\pi }{2}\)

\( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{2}\)

\(\frac{{5\pi }}{6}\)

\(\pi \)

\(y = \sin x\)

0

\( - \frac{1}{2}\)

-1

\( - \frac{1}{2}\)

0

\(\frac{1}{2}\)

1

\(\frac{1}{2}\)

0

b) Trong mặt phẳng Oxy, hãy biểu diễn các điểm \(\left( {x;y} \right)\) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) với nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\)(Hình 24).

 

c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \sin x\)trên R được biểu diễn ở Hình 25.