K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Điểm \(O\) là gốc tọa độ nên \(O\left( {0;0} \right)\)

Từ điểm \(E\) ta vẽ vuông góc với \(Ox;Oy\) cắt \(Ox\) tại – 3  và cắt \(Oy\) tại 4 nên \(E\left( { - 3;4} \right)\).

Từ điểm \(F\) ta vẽ vuông góc với \(Ox;Oy\) cắt \(Ox\) tại 3 và cắt \(Oy\) tại – 5 nên \(E\left( {3; - 5} \right)\).

x-2-1012
y41014

 

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y\)

4

1

0

1

4

11 tháng 9 2023

Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

a) Có A(–3; 4), B(–2; –2), C(1; –3), D(3; 0).

b) Ta có các điểm E(0; –2) và F(2; –1) được biểu diễn như sau:

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

a) Điểm \(A\left( {20;10} \right);B\left( {22;11} \right);C\left( {24;12} \right);D\left( {26;13} \right);E\left( {28;14} \right);D\left( {30;15} \right)\)

Ta thấy mỗi cặp giá trị \(x;y\) tương ứng trong bảng là tọa độ của các điểm \(A;B;C;D;E;F\).

10 tháng 9 2023

\(x^2=1^2+1^2\left(pythagore\right)\\ \Rightarrow x=\sqrt{2}\\ \sqrt{5}^2=1^2+y^2\left(pythagore\right)\\ \Rightarrow y=\sqrt{4}=2\)

10 tháng 9 2023

a) \(x^2=1^2+1^2=2\Rightarrow x=\sqrt[]{2}\)

b) \(\left(\sqrt[]{5}\right)^2=y^2+1^2\Rightarrow y^2=5-1=4\Rightarrow y=2\)

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1 2024

a) Dùng Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 trong công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để kiểm tra trung điểm AC và BD, ta thấy trung điểm AC và BD trùng nhau.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

b) Lưu hình vẽ ở HĐ2 thành tệp hbh.png.

Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Trên màn hình hiện lên cửa sổ như sau:

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

c) Tương tự, ta vẽ một hình thoi ABCD có cạnh 4 cm theo các bước sau:

Bước 1. Vẽ đoạn thẳng AB và có độ dài 4 cm tương tự như Bước 1 của HĐ1.

Bước 2. Vẽ điểm C sao cho BC = 4 cm.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm B, nhập bán kính bằng 4.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn điểm C bất kỳ nằm trên đường tròn tâm B.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm C, nhập bán kính bằng 4.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Lần lượt nháy chuột đường tròn tâm A và đường tròn C.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để nối B với C, C với D, D với A.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Bước 3. Ẩn đường tròn và thu được hình thoi ABCD.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Tỉ số:

\(\frac{{DE}}{{AC}} = \frac{6}{8} = \frac{3}{4};\frac{{EF}}{{BC}} = \frac{{15}}{{20}} = \frac{3}{4}\).

Xét tam giác\(DEF\) và tam giác\(ABC\) có:

\(\frac{{DE}}{{AC}} = \frac{{EF}}{{BC}} = \frac{3}{4}\) (chứng minh trên)

Do đó, \(\Delta DEF\backsim\Delta ABC\).

Tỉ số:

\(\frac{{DE}}{{MN}} = \frac{6}{3} = 2;\frac{{EF}}{{NP}} = \frac{{15}}{6} = \frac{5}{2}\).

Vì \(\frac{{DE}}{{MN}} \ne \frac{{EF}}{{NP}}\) nên hai tam giác \(DEF\) và \(MNP\) không đồng dạng với nhau.

Tỉ số:

\(\frac{{DE}}{{RS}} = \frac{6}{4} = \frac{3}{2};\frac{{EF}}{{ST}} = \frac{{15}}{{12}} = \frac{5}{4}\).

Vì \(\frac{{DE}}{{RS}} \ne \frac{{EF}}{{ST}}\) nên hai tam giác \(DEF\) và \(SRT\) không đồng dạng với nhau.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Cặp tam giác vuông ở hình d. Vì cạnh huyền và một cạnh góc vuông của tam giác này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia