Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\left(x+1\right).\left(x+4\right)\right].\left[\left(x+2\right).\left(x+3\right)\right]-24\)
\(=\left(x^2+5x+4\right).\left(x^2+5x+6\right)-24\)
Đặt m=x2+5x+4, ta có:
\(m.\left(m+2\right)-24=m^2+2m-24=m^2+6m-4m-24\)
\(=m.\left(m+6\right)-4.\left(m+6\right)=\left(m-4\right).\left(m+6\right)\)
Tự làm tiếp :v
\(1.a\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
\(=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24\)
\(=\left(x^2+5x+5\right)^2-1-24\)
\(=\left(x^2+5x+5\right)^2-25\)
\(=\left(x^2+5x+5+5\right)\left(x^2+5x+5-5\right)\)
\(=\left(x^2+5x+10\right)\left(x^2+5x\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
\(b.x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(2.a\) Đặt \(a=\frac{x+3}{x-2},b=\frac{x-3}{x+2}\)
Thay vào PT ta được:\(a^2+6b^2=7ab\)
\(\Leftrightarrow a^2-7ab+6b^2=0\)
\(\Leftrightarrow a^2-ab-6ab+6b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a-6b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=\left(6x-18\right)\left(x-2\right)\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1hayx=6\end{cases}}\) (bước kia dài bạn tự làm nhé)
a: \(\dfrac{2x^3-x^2+ax+b}{x^2-1}\)
\(=\dfrac{2x^3-2x-x^2+1+\left(a+2\right)x+b-1}{x^2-1}\)
\(=2x-1+\dfrac{\left(a+2\right)x+b-1}{x^2-1}\)
Để đây là phép chia hết thì a+2=0 và b-1=0
=>a=-2; b=1
b: \(\Leftrightarrow x^4-1+ax^2-a+bx+a⋮x^2-1\)
=>bx+a=0
=>a=b=0
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)
a. Vì đa thức \(\left(5x^3-7x^2+x\right)\) chia hết cho \(3x^n\)
nên hạng tử x chia hết cho \(3x^n\Rightarrow0\le n\le1\)\(\Rightarrow n\in\left\{0;1\right\}\)
b. Vì đa thức \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right)\) chia hết cho \(5x^ny^n\)
Nên hạng tử \(6x^2y^2\) chia hết cho \(5x^ny^n\Rightarrow0\le n\le2\Rightarrow x\in\left\{0;1;2\right\}\)
Bài 13:
(12x-5)(4x-1)+(3x-7)(1-16x)=81
<=>48x2-12x-20x+5+3x-48x2-7+112x=81
<=>-32x+115x=81+2
<=>83x=83
<=>x=1
Bài 14:
Gọi 3 số chẵn đó lần lượt là: a;(a+2);(a+4)
Theo đề bài ra ta có:
(a+2)(a+4)=a(a+2)+192
=>a2+6a+8=a2+2a+192
=>4a=184
=>a=46
Suy ra 2 số còn lại là 46+2=48 và 46+4=50
Vậy 3 số chẵn liên tiếp thỏa mãn là 46;48;50
Bài 8:
b)(x2-xy+y2)(x+y)
=x3-x2y+xy2+y3-xy2+x2y
=x3+y3
Đây còn là 1 trong các HĐT đáng nhớ
Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)
1) Đặt n+1 = k^2
2n + 1 = m^2
Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ
Đặt m = 2t+1
=> 2n+1 = m^2 = (2t+1)^2
=> 2n+1 = 41^2 + 4t + 1
=> n = 2t(t+1)
=> n là số chẵn
=> n+1 là số lẻ
=> k lẻ
+) Vì k^2 = n+1
=> n = (k-1)(k+1)
Vì k -1 và k+1 là 2 số chẵn liên tiếp
=> (k+1)(k-1) chia hết cho *
=> n chia hết cho 8
+) k^2 + m^2 = 3a + 2
=> k^2 và m^2 chia 3 dư 1
=> m^2 - k^2 chia hết cho 3
m^2 - k^2 = a
=> a chia hết cho 3
Mà 3 và 8 là 2 số nguyên tố cùng nhau
=> a chia hết cho 24
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }