K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

Đặt x2 + x + 1 = k2

<=> 4x2 + 4x + 4 = 4k2

<=> 4k2 - 4x2 - 4x + 1 - 5 = 0

<=> (2k)2 - (2x -1)2 = 5

<=> (2k + 2x -1)(2k - 2x - 1) = 5

Vì x, k nguyên nên ta có các trường hợp:

\(TH_1\hept{\begin{cases}2k+2x-1=5\\2k-2x-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\k=2\end{cases}}}\)

\(TH_2\hept{\begin{cases}2k+2x-1=1\\2k-2x-1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\k=2\end{cases}}}\)

\(TH_3\hept{\begin{cases}2k+2x-1=-1\\2k-2x-1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}\)

\(TH_4\hept{\begin{cases}2k+2x-1=-5\\2k-2x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}\)

Vậy các số nguyên x là ( -1; 1 )

13 tháng 12 2015

Sorry, mình mới học lớp 6 !

15 tháng 7 2016

Tớ nghĩ là tổng các ước dương nhé .... chứ cộng thêm ước âm thì thành =0 á ...Cũng là số chính phương nhưng bài kiểu này hơi dễ.

Do p là số nguyên tố => \(p^2\) chỉ có các ước là : \(p^2;p;1\)

Ta có: \(p^2+p+1=k^2\left(k\in N\right)\Rightarrow4p^2+4p+1+3=4k^2\) 

\(\Rightarrow\left(2p+1\right)^2+3=4k^2\Rightarrow4k^2-\left(2p+1\right)^2=3\Rightarrow\left(2k-2p-1\right)\left(2k+2p+1\right)=3\)

giờ tìm ước á

DD
19 tháng 7 2021

a) \(2xy-y^2-6x+4y=7\)

\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)

\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)

Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).

b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).

Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).

\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).

suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương.