K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2022

Đặt \(-x^2+2x=t\Rightarrow0\le t\le1\)

\(\Rightarrow-t^2+t-3+m=0\)

\(\Leftrightarrow t^2-t+3=m\)

Xét hàm \(f\left(t\right)=t^2-t+3\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=3\) ; \(f\left(1\right)=3\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{11}{4}\)

\(\Rightarrow\dfrac{11}{4}\le f\left(t\right)\le3\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\dfrac{11}{4}\le m\le3\)

NV
14 tháng 12 2020

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

NV
14 tháng 12 2020

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

NV
9 tháng 1 2023

Đặt \(\sqrt{1-x^2}=t\Rightarrow t\in\left[0;1\right]\)

Pt trở thành:

\(1-t^2+t=m\)

Xét hàm \(f\left(t\right)=-t^2+t+1\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=1\) ; \(f\left(1\right)=1\)\(f\left(\dfrac{1}{2}\right)=\dfrac{5}{4}\)

\(\Rightarrow1\le f\left(t\right)\le\dfrac{5}{4}\Rightarrow\) pt có nghiệm khi \(m\in\left[1;\dfrac{5}{4}\right]\)

9 tháng 1 2023

Anh ơi! Chỗ t thuộc [0;1] em chưa hiểu ạ 

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

1 tháng 7 2018

Phương trình có hai nghiệm phân biệt  ⇔ ∆ > 0

⇔ m 2 - 8 m + 16 = 0 m - 4 2 > 0 ⇔ m ≠ 4   *

Theo định lí Viet, ta có:

  x 1 . x 2 = m − 1 3 ; x 1 + x 2 = m + 2 3 x 1 = 2 x 2 ⇔ x 1 = 2 9 ( m + 2 ) , x 2 = 1 9 ( m + 2 ) x 1 . x 2 = m − 1 3

⇒  ​ 2 81 ( m + 2 ) 2 = m − 1 3 ⇔ 2 m 2 − 19 m + 35 = 0 ⇔ m = 5 2 m = 7  (thỏa mãn (*))

Đáp án cần chọn là: A

4 tháng 9 2021

ai đó giúp mình với :((