\(x^2-6.y^2=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

Coi phương trình trên là pt bậc 2 ẩn x tham số y

Ta có : \(\Delta=\left(y-1\right)^2-4\left(y+3\right)\)

               \(=y^2-2y+1-4y-12\)

               \(=y^2-6y-11\)

Pt có nghiệm khi \(\Delta=y^2-6y-11\ge0\)        

                               \(\Leftrightarrow\orbr{\begin{cases}y\le3-2\sqrt{5}\\y\ge3+2\sqrt{5}\end{cases}}\)

Để pt ban đầu có nghiệm nguyên thì \(\Delta\)phải là số chính phương 

Đặt \(\Delta=k^2\left(k\inℕ\right)\)

\(\Leftrightarrow y^2-6y-11=k^2\)

\(\Leftrightarrow\left(y-3\right)^2-20=k^2\)

\(\Leftrightarrow\left(y-3\right)^2-k^2=20\)

\(\Leftrightarrow\left(y-3-k\right)\left(y-3+k\right)=20\)

Vì y là số nguyên , k là số tự nhiên nên y - 3 - k < y - 3 + k và 2 số này đều nguyên

Lập bảng ước của 20 ra tìm đc y -> thế vào pt ban đầu -> tìm đc x (Nếu x;y mà ko nguyên thì loại)

13 tháng 1 2020

Không mất tính tổng quát giả sử \(x\le y\)

Ta có:

\(2^x+2^y=2^{x+y}\)

\(\Rightarrow1+2^{y-x}=2^y\)

Nếu \(y-x=0\Rightarrow y=x\Rightarrow x=y=1\)

Nếu \(y-x>0\) ta có:

\(1+2^{y-x}\equiv1\left(mod2\right)\Rightarrow2^y\equiv1\left(mod2\right)\Rightarrow y=0\Rightarrow x\in\varnothing\)

Vậy x=y=1

13 tháng 1 2020

\(x^2-2y^2=1\)

Với \(y=3\Rightarrow x=\sqrt{19}\left(KTM\right)\)

Với \(y>3\Rightarrow y^2\equiv1\left(mod3\right)\Rightarrow2y^2\equiv2\left(mod3\right)\Rightarrow2y^2+1\equiv0\left(mod3\right)\)

\(\Rightarrow x^2\equiv0\left(mod3\right)\Rightarrow x=3\Rightarrow y=2\)

10 tháng 4 2018

 B1: n2 + 6n + 8 = n2 + 4n + 2n + 8 = n(n+4) + 2(n+4) = (n+2)(n+4)

Vì n+2 < n+4 => n + 2 = 1 => n = -1

=> A = 3 nguyên tố, thoả

B2: x + y + xy = 2

=> x(y+1) + (y+1) = 3

=> (x+1)(y+1) = 3

Ta có:

x+113-1-3
y+131-3-1
x02-2-4
y20-4-2

        Vậy (x,y) = .....................

B3: a : b = c dư r

=> 112 : b = 5 dư r

=> 112 : 5 = b dư r

=> 112 - r chia hết cho 5 và r < 5

=> r = 2 => b = 22