K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2,Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

10 tháng 1 2022

câu 2: 

Với p=2→2p+1=5p=2→2p+1=5 không là lập phương 11 số tự nhiên

→p=2→p=2 loại

→p>2→(p,2)=1→p>2→(p,2)=1

Đặt 2p+1=(2k+1)3,k∈N2p+1=(2k+1)3,k∈N vì 2p+12p+1 lẻ

→2p=(2k+1)3−1→2p=(2k+1)3−1

→2p=(2k+1−1)((2k+1)2+(2k+1)+1)→2p=(2k+1−1)((2k+1)2+(2k+1)+1)

→2p=2k(4k2+6k+3)→2p=2k(4k2+6k+3)

→p=k(4k2+6k+3)→p=k(4k2+6k+3)

Vì pp là số nguyên tố, 4k2+6k+3>k4k2+6k+3>k

→k=1→k=1 và 4k2+6k+34k2+6k+3 là số nguyên tố

→4k2+6k+3=13→4k2+6k+3=13 (Khi k=1k=1) là số nguyên tố

→k=1→k=1 chọn

→2p+1=27→2p+1=27

→p=13

câu 3: p−q+2q=(p−q)3→2q=(p−q)((p−q)2−1)=(p−q)(p−q−1)(p−q+1)p−q+2q=(p−q)3→2q=(p−q)((p−q)2−1)=(p−q)(p−q−1)(p−q+1)
Th1: p−qp−q chia hết cho 2 suy ra p−q=2kp−q=2k
Suy ra q=k.(2k−1)(2k+1)q=k.(2k−1)(2k+1)
Do vậy k=1k=1 vì nếu không thì qq thành tích 3 số nguyên lớn hơn 1 suy ra vô lý vì nó là nguyên tố.
Suy ra p−q=2p−q=2 Như vậy q=3,p=5q=3,p=5 Thỏa mãn
TH2: p−q−1p−q−1 chia hết cho 2 suy ra p−q−1=2tp−q−1=2t nên q=(2t+1)t(2t+2)q=(2t+1)t(2t+2)
Do vậy t=0t=0 vì nếu không thì qq thành tích 2 số nguyên lớn hơn 1.
Suy ra p−q−1=0↔p−q=1↔p=3,q=2p−q−1=0↔p−q=1↔p=3,q=2 thay vào đề loại.
TH3: p−q+1=2mp−q+1=2m suy ra q=(2m−1)(2m−2)mq=(2m−1)(2m−2)m
Nếu m≥2m≥2 suy ra qq thành tích 3 số nguyên lớn hơn 1 loại
Suy ra m=0,1m=0,1 thay vào đều loại.
Vậy p=5,q=3p=5,q=3

tick nha
10 tháng 1 2022

Nhìn là cũng biết e cop rùi :))

Khi cop nếu ko chú ý thì sẽ bị ra mỗi cái hai lần, mà e cũng thế.

=> Chứng tỏ cop. Quá chuẩn nhỉ?

NV
12 tháng 1 2022

1.

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

Do vế phải chia hết cho 3  \(\Rightarrow\) vế trái chia hết cho 3

\(\Rightarrow a+b+c⋮3\Rightarrow\left(a+b+c\right)^3⋮27\)

\(a+b+c⋮3\Rightarrow3\left(a+b+c\right)⋮9\)

\(\Rightarrow\left(a+b+c\right)^3-\left(a^3+b^3+c^3\right)-3\left(a+b+c\right)\left(ab+bc+ca\right)⋮9\)

\(\Rightarrow3abc⋮9\Rightarrow abc⋮3\)

2.

Đặt \(2p+1=n^3\Rightarrow2p=n^3-1=\left(n-1\right)\left(n^2+n+1\right)\) (hiển nhiên n>1)

Do \(n^2+n+1=n\left(n+1\right)+1\) luôn lẻ \(\Rightarrow n-1\) chẵn \(\Rightarrow n=2k+1\)

\(\Rightarrow2p=\left(2k+1-1\right)\left(n^2+n+1\right)=2k\left(n^2+n+1\right)\)

\(\Rightarrow p=k\left(n^2+n+1\right)\Rightarrow k=1\Rightarrow n=3\)

\(\Rightarrow p=13\)

12 tháng 1 2022

Tham khảo:

2, Với \(p=2->2p+1=5\) không là lập phương 1 số tự nhiên

\(->p=2\) loại

\(-> p>2->(p,2)=1\)

Đặt \(2p+1=(2k+1)^3, k∈ N,\)vì \(2p+1\) lẻ

\(->2p=(2k+1)^3-1\)

\(-> 2p=(2k+1-1)[(2k+1)^2+(2k+1)+1]\)

\(->2p=2k(4k^2+6k+3)\)

\(->p=k(4k^2+6k+3)\)

Vì \(p\)  là số nguyên tố, \(4k^2+6k+3>k\)

\(->k=1\) và \(4k^2+6k+3\) là số nguyên tố.

\(->4k^2+6k+3=13(\) khi \(k=1)\) là số nguyên tố

\(->k=1\) (chọn)

\(-> 2p+1=27\)

\(->p=13\)

bn tham khảo câu hỏi tương tự nha

16 tháng 7 2018

Tìm số nguyên tố p sao cho 2p+1 là lập phương của 1 số tự nhiên?

 Câu trả lời hay nhất:  Lý thuyết : 

Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có 2 ước là 1 và chính nó. Mọi số tự nhiên >1 bao giờ cũng có ước nguyên tố . 
- Hợp số là số tự nhiên lớn hơn 1 và có nhiều hơn 2 ước 
- Tập hợp số nguyên tố là vô hạn 
- Số 0 và 1 không phải là số nguyên tố; cũng không là hợp số 
- Số nguyên tố chẵn duy nhất là 2 
- Số a và b gọi là 2 số nguyên tố cùng nhau 
- p là số nguyên tố; p > 2 có dạng : p = 4n + 1 hoặc p= 4n+3 
- p là số nguyên tố; p > 3 có dạng : p = 6n +1 hoặc p =6n + 5 
- Ước nguyên tố nhỏ nhất của hợp số N là 1 số không vượt quá √N 
- số nguyên tố Mecxen có dạng 2^p - 1 (p là số nguyên tố ) 
- Số nguyên tố Fecma có dạng 2^(2n) + 1 (n Є N) 
Khi n = 5. Euler chỉ ra 2^(2.5) + 1 = 641.6700417 (hợp số ) 


Bài tập: 

Đặt 2p + 1 = n³ với n là số tự nhiên 

Cách giải: phân tích ra thừa số 
Dùng tính chất : Số nguyên tố có 2 ước là 1 và chính nó. 

Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

Dựa vào bài trên tương tự mà làm vào!!

17 tháng 7 2018

Don't look at me chép mạng 100% đó nha bạn

31 tháng 8 2015

Nếu \(n=0\to n^{1997}+n^{1975}+1=1\) không phải là số nguyên tố.

Xét  \(n\) là số nguyên dương. Ta có  \(n^{1997}-n^2=n^2\left(n^{3\times665}-1\right)\vdots\left(n^3\right)^{665}-1\vdots n^3-1\vdots n^2+n+1.\) 

Suy ra \(n^{1997}-n^2\vdots n^2+n+1.\)  
Tương tự, \(n^{1975}-n=n\left(n^{3\times658}-1\right)\vdots\left(n^3\right)^{658}-1\vdots n^3-1\vdots n^2+n+1.\)
Từ đó ta suy ra \(n^{1997}+n^{1975}+1=\left(n^{1997}-n^2\right)+\left(n^{1975}-n\right)+\left(n^2+n+1\right)\vdots n^2+n+1.\)
Vì \(n^{1997}+n^{1975}+1\)  là số nguyên tố (chỉ có hai ước dương là 1 và chính nó) và \(n^2+n+1>1\), nên \(n^{1997}+n^{1975}+1=n^2+n+1.\) Suy ra \(\left(n^{1997}-n^2\right)+\left(n^{1975}-n\right)=0.\) Do \(n\)là số nguyên dương nên \(\left(n^{1997}-n^2\right)\ge0,\left(n^{1975}-n\right)\ge0.\) Vậy \(n=1.\)


Thử lại với \(n=1\to n^{1997}+n^{1975}+1=3\) là số nguyên tố. 

Đáp số \(n=1.\)

30 tháng 8 2020

dạng này đc gọi là dạng j thế câuk

14 tháng 10 2021

Đặt \(2P+1=a^3\in N\)

\(\Rightarrow2P=a^3-1=\left(a-1\right)\left(a^2+a+1\right)\)

Với \(P=2\Leftrightarrow2P+1=2\cdot2+1=5\left(ktm\right)\)

Với \(P>2\)

Do P>2 thì P lẻ

Mà 2P chẵn, \(a^2+a+1=a\left(a+1\right)+1\Rightarrow a^2+a+1\) lẻ

Do đó \(a-1=2\)

\(\Leftrightarrow a=3\\ \Leftrightarrow P=13\left(tm\right)\)