K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

câu 2 nề

A=\(\frac{2x+1}{x^2+2}\)=\(\frac{x^2+2-2x-x^2-1}{x^2+2}\)= \(\frac{x^2+2}{x^2+2}\)-\(\frac{x^2+2x+1}{x^2+2}\) 1- \(\frac{x^2+2x+1}{x^2+2}\)= 1- \(\frac{\left(x+1\right)^2}{x^2+2}\)

vậy max A = 1 khi x= -1

28 tháng 3 2018

mình bik câu 1,3 r. Cần câu 2 thôi. Giúp mình với

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
12 tháng 8 2016

A=\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{2017.2018}\)

A=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{2017}\)-\(\frac{1}{2018}\)

A=1-\(\frac{1}{2018}\)

A=\(\frac{2018}{2018}\)-\(\frac{1}{2018}\)

A=\(\frac{2017}{2018}\)

Vậy A=\(\frac{2017}{2018}\)

16 tháng 12 2023

1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)

Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ

Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ

 a2+ b= 2234 không chia hết cho 5

Giả sử cả a2, b2 đều không chia hết cho 5

-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)

Mà a2+ b= 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai

Giả sử a=5 -> a2= 25

b2= 2209

b2= 472

-> b=47

                    Vậy hai số cần tìm là 5 và 47

 

7 tháng 4 2017

Ta có:

\(\frac{1}{2a}+\frac{1}{3a}+\frac{1}{4a}=\frac{1}{b^2-2b}\)

\(\Leftrightarrow13b^2-26b-12a=0\)

\(\Leftrightarrow12\left(a+b\right)=13b^2-14b\)

\(\Leftrightarrow a+b=\frac{13b^2-14b}{12}\)

\(\Leftrightarrow a+b=b^2-b+\frac{b^2-2b}{12}=b^2-b+\frac{b\left(b-2\right)}{12}\)

Dễ thấy b phải là số chẵn (1)

để \(\frac{b\left(b-2\right)}{2.2.3}\) nguyên thì

\(\Rightarrow\orbr{\begin{cases}b⋮3\\b-2⋮3\end{cases}}\)(2)

Từ (1) và (2) \(\Rightarrow\orbr{\begin{cases}b=6k\\b-2=6k\end{cases}\left(k\ge1\right)}\)

Với \(b=6k\) thế vào ta được

\(a+b=\frac{13\left(6k\right)^2-14.\left(6k\right)}{12}=36k^2-7k\)

Dễ thấy hàm số \(f\left(k\right)=39k^2-7k\) là hàm đồng biết với \(k\ge1\)

Từ đây ta có a + b nhỏ nhất khi k nhơ nhất hay \(k=1\)

\(\Rightarrow\hept{\begin{cases}b=6\\a=26\\a+b=32\end{cases}}\)

Tương tự cho trường hợp \(b-2=6k\) sẽ tìm được GTNN của a + b

PS: Vì m thích làm sự đơn điệu của hàm số thôi. Nếu các b có cách khác thì cứ làm cho gọn nhé :)

7 tháng 4 2017

\(\Rightarrow a=26\)\(b=6\)Còn cách làm thì giống như Bạn alibaba nguyễn đó bạn 

~ Chúc bạn học giỏi ~~~

25 tháng 3 2020

a - b = 1 => a = 1 + b 

=> \(S=\frac{\left(b+1\right)^2+b^2}{b}=\frac{2b^2+2b+1}{b}=2b+\frac{1}{b}+2\ge2\sqrt{2b.\frac{1}{b}}+2=2\sqrt{2}+2\)

Dấu bằng xảy ra <=> \(\hept{\begin{cases}2b=\frac{1}{b}\\a=1+b\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{1}{\sqrt{2}}\\a=1+\frac{1}{\sqrt{2}}\end{cases}}\)

Vậy GTNN S = \(2\sqrt{2}+2\)