Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt n+26=a^3 và n-11=b^3
=>a^3-b^3=37<=>(a-b)(a^2+ab+b^2)=37
vì a^2+ab+b^2_>0 nên ta có 2 trường hợp
TH1a-b=1
a^2+ab+b^2=7
từ pt trên rút được a=b+1 thay vào pt dưới dạng 2 nghiệm b=3 hoặc b=-4 mà b>0 nên b=3
thay vào ta tính đc n=38
TH2
a-b=37
a^2+ab+b^2=1
trường hợp này giải tương tự trên mà không có nghiệm nguyên nên LOẠI
vậy kết luận b=38
k mk nha khổ lw ms làm đc,,,,,,,,...........
\(\hept{\begin{cases}n+26=a^3\\n-11=b^3\end{cases}}\)
\(\Rightarrow a^3-b^3=37\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=37\)
Tìm \(n\in Z\) để n + 26 và n -11 đều là lập phương của một số tự nhiên .
{ Đề thi HSG huyện Hạ Hòa }
G/s \(n+26=a^3\) và \(n-11=b^3\) với a,b là các STN
\(\Rightarrow a^3-b^3=n+26-n+11\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=37\)
Vì \(\hept{\begin{cases}a-b>0\\a^2+ab+b^2\ge0\end{cases}\left(\forall a,b\right)}\)
Ta có 2 TH sau:
Nếu \(\hept{\begin{cases}a-b=1\\a^2+ab+b^2=37\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b+1\\a^2+ab+b^2=37\end{cases}}\)
\(\Leftrightarrow\left(b+1\right)^2+\left(b+1\right)b+b^2-37=0\)
\(\Leftrightarrow3b^2+3b-36=0\)
\(\Leftrightarrow\left(b-3\right)\left(b+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=3\left(tm\right)\\b=-4\left(ktm\right)\end{cases}}\Rightarrow b=3\Rightarrow a=4\)
\(\Rightarrow n=38\)
Nếu \(\hept{\begin{cases}a-b=37\\a^2+ab+b^2=1\end{cases}}\)
\(\Leftrightarrow\left(b+37\right)^2+\left(b+37\right)b+b^2=1\)
\(\Leftrightarrow b^2+74b+1369+b^2+37b+b^2-1=0\)
\(\Leftrightarrow3b^2+111b+1368=0\)
\(\Leftrightarrow b^2+37b+456=0\)
\(\Leftrightarrow\left(b^2+37b+\frac{1369}{4}\right)+\frac{455}{4}=0\)
\(\Leftrightarrow\left(b+\frac{37}{2}\right)^2=-\frac{455}{4}\)
=> vô lý
Vậy n = 38
ta có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)\)
\(\Delta=4m^2-8m+9\)
\(\Delta=\left(2m-2\right)^2+5>0\)
do dó phương trình đã cho có 2 nghiệm phân biệt x1 ; x2
áp dụng định lí Vi-ét ta có: \(\hept{\begin{cases}s=x_1+x_2=2m-1\\p=x_1.x_2=m-2\end{cases}}\)
theo bài ra: x13 + x23 = 27
<=> (x1 + x2 )3 - 3x1x2 (x1+x2) - 27=0 <=> (2m-1)3 - 3(m-2) ( 2m-1) -27 =0
<=> 8m3 -12m2 +6m-1 - 6m2 +15m - 6 - 27 =0
<=> 8m3 - 18m2 + 21m - 34 =0 <=> (m-2)(8m2 -2m+17) = 0
\(\Rightarrow\hept{\begin{cases}m-2=0\\8m^2-2m+17=0\left(PTVN\right)\end{cases}}\) <=> m=2
Vậy m=2 thỏa mãn đề bài
( chú giải: PTVN là phương trình vô nghiệm)