Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)
\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)
\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)
\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)
Yêu cầu bài toán thỏa mãn khi:
\(m\le minf\left(t\right)=-2\)
Xét hàm \(f\left(x\right)=\left(m+1\right)x^2+2mx+9m+5\)
\(y\) xác định với mọi x khi và chỉ khi \(f\left(x\right)>0\) với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'=m^2-\left(m+1\right)\left(9m+5\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-8m^2-14m-5< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m< -\frac{5}{4}\\m>-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m>-\frac{1}{2}\)
a, \(f\left(x\right)=-x^2+mx+m+1\)
Để f(x) \(\le0\) \(\forall x\in R\) mà \(a=-1< 0\)
\(\Leftrightarrow\Delta\le0\) \(\Leftrightarrow\Delta=m^2+4\left(m+1\right)\le0\Leftrightarrow m^2+4m+4\le0\)
\(\Leftrightarrow\left(m+2\right)^2\le0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)
b, Để hàm số y xác định \(\forall x\in R\)
\(\Leftrightarrow mx^2-2mx+2\ge0\) có nghiệm \(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=4m^2-2.4.m\le0\\a=m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le2\\m>0\end{matrix}\right.\) \(\Leftrightarrow0< m\le2\)
a/ Do \(a=-1< 0\)
\(\Rightarrow\) Để \(f\left(x\right)\le0\) \(\forall x\in R\Leftrightarrow\Delta'\le0\)
\(\Leftrightarrow m^2+4\left(m+1\right)\le0\Leftrightarrow\left(m+2\right)^2\le0\)
\(\Rightarrow m=-2\)
b/ Để hàm số xác định với mọi x
\(\Leftrightarrow f\left(x\right)=mx^2-2mx+2\ge0\) \(\forall x\)
- Với \(m=0\Rightarrow f\left(x\right)=2\) thỏa mãn
- Với \(m\ne0\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-2m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< 2\end{matrix}\right.\)
Vậy \(0\le m< 2\)
ĐKXĐ: \(\left(m+4\right)x^2-\left(m-4\right)x-2m+1\ge0\)
Xét \(m+4=0\Leftrightarrow m=-4\) => ..... (loại vì trường hợp này ràng buộc với x, ko thể với mọi x thuộc R được)
Xét \(m\ne-4\)
\(\Rightarrow\left\{{}\begin{matrix}m+4>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-4\\\left(m-4\right)^2-4\left(m+4\right)\left(1-2m\right)\le0\left(1\right)\end{matrix}\right.\)
(1) lúc này là phương trình b2, áp dụng dấu của tam thức bậc 2 để giải nhé :))
\(f\left(x\right)=\sqrt{\left(m+4\right)x^2-\left(m-4\right)x-2m+1}\) xđ với mọi x
\(\Leftrightarrow\left(m+4\right)x^2-\left(m-4\right)x-2m+1\ge0\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+4>0\\\left(m-4\right)^2-4.\left(m+4\right)\left(-2m+1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-4\\m^2-8m+16+8m^2+28m-16\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-4\\9m^2+20m\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-4\\-\frac{20}{9}\le x\le0\end{matrix}\right.\)
\(\Leftrightarrow-\frac{20}{9}\le x\le0\)
Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)
\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)
Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)