Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
Mình gợi ý phần đầu nè. Xét \(x=0\) riêng được \(y=0\) hoặc \(y=1\).
Xét \(x\ne0\). Khi đó \(x\) và \(x^2+x+1\) nguyên tố cùng nhau với mọi \(x\) nguyên khác 0.
(Ở đây ta chỉ định nghĩa 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất là 1 nên số âm vẫn được).
Để CM điều này ta gọi \(d=gcd\left(x^2+x+1,x\right)\) thì \(1⋮d\).
Vế trái là một số chia hết cho 4 nên trong 2 số \(x\) và \(x^2+x+1\) phải có một số chia hết cho 4
(Nếu mỗi số đều chia hết cho 2 thì không thể nguyên tố cùng nhau)
Trường hợp 1: \(x⋮4\) còn \(x^2+x+1\) lẻ.
Do \(y\) và \(y-1\) có 1 số chẵn và 1 số lẻ nên số chẵn sẽ là ước của \(x\) còn số lẻ là ước của \(x^2+x+1\).
Tức là có 2 trường hợp: \(x=4y\) và \(x=4\left(y-1\right)\).
Trường hợp 2 ngược lại.
Tới đây bạn tự giải được nha.
\(x\left[1+x+x^2\right]=4y\left[y-1\right]\)
\(\Leftrightarrow x^3+x^2-4y^2+x+4y=0\)
\(\Leftrightarrow x^2\left[x+1\right]+x-4y^2+4y=0\)
\(\Leftrightarrow\Delta=b^2-4ac=1-16xy+16xy^2-16y+16y^2\)
\(\Rightarrow\orbr{\begin{cases}x1=\frac{-1+\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\\x2=\frac{-1-\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\end{cases}}\)
đến đây tự làm tiếp nhé
Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô
\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)
\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)
\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)
\(\Leftrightarrow x^2-y-xy+x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)
+) x = -1 suy ra y = 1
+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)
2/ a/ \(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow y\left(x-1\right)+1-x^2=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-1-x\right)=3\)
Làm tiếp nhé
b/ \(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow4x^2+4xy+4y^2=4x^2y^2\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)-\left(4x^2y^2+4xy+1\right)=-1\)
\(\Leftrightarrow\left(2x+2y\right)^2-\left(2xy+1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy+1\right)\left(2x+2y-2xy-1\right)=-1\)
Làm tiếp nhé
1/ \(x^2+x+19=z^2\)
\(\Leftrightarrow4x^2+4x+76=4z^2\)
\(\Leftrightarrow\left(2x+1\right)^2-4z^2=-75\)
\(\Leftrightarrow\left(2x+1-2z\right)\left(2x+1+2z\right)=-75\)
Tới đây đơn giản rồi làm tiếp đi nhé
Ta có \(\left(x+y\right)^3=\left(x-y-6\right)^2\left(1\right)\)
Vì x,y nguyên dương nên
\(\left(x+y\right)^3>\left(x+y\right)^2\)kết hợp (1) ta được:
\(\left(x-y-6\right)^2>\left(x+y\right)^2\Leftrightarrow\left(x+y\right)^2-\left(x-y-6\right)^2< 0\Leftrightarrow\left(x-3\right)\left(y+3\right)< 0\)
Mà y+3 >0 (do y>0)\(\Rightarrow x-3< 0\Leftrightarrow x< 3\)
mà \(x\inℤ^+\)\(\Rightarrow x\in\left\{1;2\right\}\)
*x=1 thay vào (1) ta có:
\(\left(1+y\right)^3=\left(1-y-6\right)^2\Leftrightarrow y^3+3y^2+3y+1=y^2+10y+25\Leftrightarrow\left(y-3\right)\left(y^2+5y+8\right)=0\)
mà \(y^2+5y+8=\left(y+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
\(\Rightarrow y-3=0\Leftrightarrow y=3\inℤ^+\)
*y=2 thay vào (1) ta được:
\(\left(2+y\right)^3=\left(2-y-6\right)^2\Leftrightarrow y^3+6y^2+12y+8=y^2+8y+16\Leftrightarrow y^3+5y^2+4y-8=0\)
Sau đó cm pt trên không có nghiệm nguyên dương.
Vậy x=1;y=3
\(\left(x^2-x+1\right)\left(xy+y^2\right)=3x-1\left(1\right)\)
\(3x-1⋮x^2-x+1\)
zì \(lim\left(x\rightarrow\infty\right)\frac{3x-1}{x^2-x+1}=0\)
zà thấy x=2 thỏa mãn ,=> x=1
thay zô 1 ta có
\(1\left(y+y^2\right)=2=>y^2+y-2=0=>\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
zậy \(\left(x,y\right)\in\left\{\left(1,1\right)\left(1,-2\right)\right\}\)