K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2,Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

3 tháng 1 2020

Ta có \(\left(x+y\right)^3=\left(x-y-6\right)^2\left(1\right)\)

Vì x,y nguyên dương nên

\(\left(x+y\right)^3>\left(x+y\right)^2\)kết hợp (1) ta được:

\(\left(x-y-6\right)^2>\left(x+y\right)^2\Leftrightarrow\left(x+y\right)^2-\left(x-y-6\right)^2< 0\Leftrightarrow\left(x-3\right)\left(y+3\right)< 0\)

Mà y+3 >0 (do y>0)\(\Rightarrow x-3< 0\Leftrightarrow x< 3\)

mà \(x\inℤ^+\)\(\Rightarrow x\in\left\{1;2\right\}\)

*x=1 thay vào (1) ta có:

\(\left(1+y\right)^3=\left(1-y-6\right)^2\Leftrightarrow y^3+3y^2+3y+1=y^2+10y+25\Leftrightarrow\left(y-3\right)\left(y^2+5y+8\right)=0\)

mà \(y^2+5y+8=\left(y+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

\(\Rightarrow y-3=0\Leftrightarrow y=3\inℤ^+\)

*y=2 thay vào (1) ta được: 

\(\left(2+y\right)^3=\left(2-y-6\right)^2\Leftrightarrow y^3+6y^2+12y+8=y^2+8y+16\Leftrightarrow y^3+5y^2+4y-8=0\)

Sau đó cm pt trên không có nghiệm nguyên dương.

Vậy x=1;y=3

23 tháng 12 2016

Mình gợi ý phần đầu nè. Xét \(x=0\) riêng được \(y=0\) hoặc \(y=1\).

Xét \(x\ne0\). Khi đó  \(x\) và \(x^2+x+1\) nguyên tố cùng nhau với mọi \(x\) nguyên khác 0.

(Ở đây ta chỉ định nghĩa 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất là 1 nên số âm vẫn được).

Để CM điều này ta gọi \(d=gcd\left(x^2+x+1,x\right)\) thì \(1⋮d\).

Vế trái là một số chia hết cho 4 nên trong 2 số \(x\) và \(x^2+x+1\) phải có một số chia hết cho 4

(Nếu mỗi số đều chia hết cho 2 thì không thể nguyên tố cùng nhau)

Trường hợp 1: \(x⋮4\) còn \(x^2+x+1\) lẻ.

Do \(y\) và \(y-1\) có 1 số chẵn và 1 số lẻ nên số chẵn sẽ là ước của \(x\) còn số lẻ là ước của \(x^2+x+1\).

Tức là có 2 trường hợp: \(x=4y\) và \(x=4\left(y-1\right)\).

Trường hợp 2 ngược lại.

Tới đây bạn tự giải được nha.

23 tháng 12 2016

\(x\left[1+x+x^2\right]=4y\left[y-1\right]\)

\(\Leftrightarrow x^3+x^2-4y^2+x+4y=0\)

\(\Leftrightarrow x^2\left[x+1\right]+x-4y^2+4y=0\)

\(\Leftrightarrow\Delta=b^2-4ac=1-16xy+16xy^2-16y+16y^2\)

\(\Rightarrow\orbr{\begin{cases}x1=\frac{-1+\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\\x2=\frac{-1-\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\end{cases}}\)

đến đây tự làm tiếp nhé

30 tháng 10 2019

Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô

\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)

\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)

\(\Leftrightarrow x^2-y-xy+x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)

+) x = -1 suy ra y = 1

+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

30 tháng 10 2019

ai tích mình sai vậy ạ, xin lí do

24 tháng 1 2017

\(pt\Leftrightarrow\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-4}}{x}=\frac{1}{2}\)

Áp dụng BĐT AM-GM ta có: 

\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{4\left(y-4\right)}}{2y}\le\frac{4+y-4}{2\cdot2y}=\frac{1}{4}\)

Tương tự ta cũng có \(\frac{\sqrt{x-4}}{x}\le\frac{1}{4}\)

Cộng theo vế ta có Đpcm

Dấu "=" xảy ra khi x=y, thay vào giải ra ta dc x=y=8

\(\left(x^2-x+1\right)\left(xy+y^2\right)=3x-1\left(1\right)\)

\(3x-1⋮x^2-x+1\)

zì \(lim\left(x\rightarrow\infty\right)\frac{3x-1}{x^2-x+1}=0\)

zà thấy x=2 thỏa mãn ,=> x=1

thay zô 1 ta có

\(1\left(y+y^2\right)=2=>y^2+y-2=0=>\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

zậy \(\left(x,y\right)\in\left\{\left(1,1\right)\left(1,-2\right)\right\}\)