Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biến đổi: VT=\(\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2< 1\)
Mà \(x,y\in Z\)Nên VT\(\in Z\)=> VT=0
Vậy: \(\hept{\begin{cases}3x+7y=0\\x+7=0\\y-3=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-7\\y=3\end{cases}}\)
10x²+50y²+42xy+14x-6y+57<0
Ta có 10x²+50y²+42xy+14x-6y+57
= 9x²+49y²+42xy+x²+14x+49+y²-6y+9-1
= (3x+7y)²+(x+7)²+(y-3)²-1 ≥ -1 vì[(3x+7y)²+(x+7)²+(y-3)² ≥ 0 với∀x,y]
Mà x,y nguyên => 10x^2+50y^2+42xy+14x-6y+57<0
⇔ (3x+7y)²+(x+7)²+(y-3)² = 0
⇔ 3x+7y=0 (*)
(x+7)=0
(y-3)=0
⇔ x= -7
y= 3
Thay vào (*) ta có 3.(-7)+7.3=0
⇔ 0=0 (thõa mãn)
Vậy Cặp số nguyên (x;y) thõa mãn đề ra là (x;y)=(-7;3)
10x²+50y²+42xy+14x-6y+57<0
Ta có 10x²+50y²+42xy+14x-6y+57
= 9x²+49y²+42xy+x²+14x+49+y²-6y+9-1
= (3x+7y)²+(x+7)²+(y-3)²-1 ≥ -1 vì[(3x+7y)²+(x+7)²+(y-3)² ≥ 0 với∀x,y]
Mà x,y nguyên => 10x^2+50y^2+42xy+14x-6y+57<0
⇔ (3x+7y)²+(x+7)²+(y-3)² = 0
⇔ 3x+7y=0 (*)
(x+7)=0
(y-3)=0
⇔ x= -7
y= 3
Thay vào (*) ta có 3.(-7)+7.3=0
⇔ 0=0 (thõa mãn)
Vậy Cặp số nguyên (x;y) thõa mãn đề ra là (x;y)=(-7;3)
\(VT=9x^2+2\cdot3x\cdot7y+49y^2+x^2+2\cdot x\cdot7+49+y^2-2\cdot y\cdot3+9-1.\)
\(=\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2-1\)
VT >= -1 với mọi x;y. Để VT <0 thì :\(\hept{\begin{cases}3x+7y=0\\x+7=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-7\\y=3\end{cases}}\)
Do \(x,y,z\inℤ\)
nen tu gia thiet suy ra
\(x^2+4y^2+z^2-2xy-2y+2z\le-1\)
\(\Leftrightarrow\left(x-y\right)^2+\left(z+1\right)^2+\left(y-1\right)^2+2y^2\le1\)
mat khac
\(\hept{\begin{cases}\left(y-1\right)^2+2y^2>0\\\left(x-y\right)^2+\left(z+1\right)^2\ge0\end{cases}}\)
nen \(\left(x-y\right)^2+\left(z+1\right)^2+\left(y-1\right)^2+2y^2=1\)
den day ban lap bang cac gia tri se tim duoc \(\left(x,y,z\right)=\left(0,0,-1\right)\)
\(x^2-\left(5+y\right)x+2+y=0\Leftrightarrow x^2-\left(5+y\right)x+5+y-1=2\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(y+5\right)\left(x-1\right)=2\)
\(\Leftrightarrow\left(x-1\right)\left(x-y-4\right)=2=1\cdot2=2\cdot1=\left(-1\right)\left(-2\right)=\left(-2\right)\left(-1\right)\)
Giải phương trình tích trên ta được 4 tập nghiệm là \(\left(x;y\right)\in\left\{\left(2;-4\right);\left(3;-2\right);\left(0;-2\right);\left(-1;-4\right)\right\}\)
Nghĩ ra rồi -_-
Phương trình trên có nghiệm khi và chỉ khi \(\Delta=\left(5+y\right)^2-4\left(2+y\right)\ge0\)
\(\Leftrightarrow y^2+6y+17\ge0\) (luôn đúng do VT >= 8 với mọi y)
Để phương trình có nghiệm nguyên thì \(\Delta\)là số chính phương.
Đặt \(y^2+6y+17=k^2\)
Suy ra \(\left(y+3\right)^2+8=k^2\) (\(k\inℕ\))
\(\Leftrightarrow\left(y+3\right)^2-k^2=8\)
\(\Leftrightarrow\left(y+3-k\right)\left(y+3+k\right)=8\)
Lập bảng ước số là ra.
\(9x^2+42xy+49y^2+x^2+14x+49+y^2-6y+9-1<0\)
\(\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2<1\)
Vậy y=3; x=-7