Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời hay nhất: trừu tượng. nếu không nguyên
có lẽ là đề tìm điều kiện (x+y) thôi vì x+y không cố định
đặt x+y=a=> y=a-x
thay vào pt điều kiện
2(x^2+1)+x^2=2(a-x)(x+1)
3x^2+2 =2ax+2a-2x^2-2x
5x^2+2x-2ax+2-2a=0
5x^2+2(1-a)x+2(1-a)=0
(1-a)^2-10(1-a)>=0
(1-a)(1-a-10)>=0
(a-1)(a+9)>=0
a<=-9
hoặc
a>=1
(x+y)<-9 hoặc (x+y)>=1
Bạn ơi bạn đề có x và y thuộc số tự nhiên không ?
\(x^2-\left(5+y\right)x+2+y=0\Leftrightarrow x^2-\left(5+y\right)x+5+y-1=2\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(y+5\right)\left(x-1\right)=2\)
\(\Leftrightarrow\left(x-1\right)\left(x-y-4\right)=2=1\cdot2=2\cdot1=\left(-1\right)\left(-2\right)=\left(-2\right)\left(-1\right)\)
Giải phương trình tích trên ta được 4 tập nghiệm là \(\left(x;y\right)\in\left\{\left(2;-4\right);\left(3;-2\right);\left(0;-2\right);\left(-1;-4\right)\right\}\)
Nghĩ ra rồi -_-
Phương trình trên có nghiệm khi và chỉ khi \(\Delta=\left(5+y\right)^2-4\left(2+y\right)\ge0\)
\(\Leftrightarrow y^2+6y+17\ge0\) (luôn đúng do VT >= 8 với mọi y)
Để phương trình có nghiệm nguyên thì \(\Delta\)là số chính phương.
Đặt \(y^2+6y+17=k^2\)
Suy ra \(\left(y+3\right)^2+8=k^2\) (\(k\inℕ\))
\(\Leftrightarrow\left(y+3\right)^2-k^2=8\)
\(\Leftrightarrow\left(y+3-k\right)\left(y+3+k\right)=8\)
Lập bảng ước số là ra.
x^2 - 25 = y(y + 6)
<> x^2 - 25 + 9 = y^2 + 6y + 9
<> x^2 - 16 = (y + 3)^2
<> x^2 - (y + 3)^2 = 16
<>(x - y - 3)(x + y +3) = 16
vi x,y nguyên nên xay ra các trường hợp sau
+ x - y - 3 = 16 và x + y + 3 = 1 giải hệ này loại
+ x - y -3 = 8 và x + y + 3 = 2
<>x = 5 và y = -6
tương tự
.....................................
+ x - y - 3 =-8 và x + y + 3 = -2
bạn tự gải tiếp nhé
good luck
Xét \(x=0\Rightarrow y^2=-2y\Leftrightarrow\orbr{\begin{cases}y=0\\y=-2\end{cases}}\)
Xét \(x\ne0\Rightarrow x^2\ge1\)(vì \(x\inℤ\))
\(2x^2-2xy+y^2=2\left(x-y\right)\Leftrightarrow x^2+\left(x^2-2xy+y^2\right)-2\left(x-y\right)=0\)
\(\Leftrightarrow x^2+\left(x-y\right)^2-2\left(x-y\right)=0\)
Vì \(x^2\ge1\)nên \(x^2+\left(x-y\right)^2-2\left(x-y\right)\ge\left(x-y\right)^2-2\left(x-y\right)+1=\left(x-y-1\right)^2\ge0\)
Mà đề yêu cầu giải biểu thức bằng 0 nên ta xét điều kiện xảy ra của dấu "=": \(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=1,y=0\\x=-1,y=-2\end{cases}}\)
\(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=0\end{cases}}\\\hept{\begin{cases}x=-1\\y=-2\end{cases}}\end{cases}}}\)Vậy phương trình nhận 4 nghiệm (x;y)=(0;0),(0;-2),(1;0),(-1;-2).