\(y=f\left(x\right)=\dfrac{\sqrt{4\pi^2-x^2}}{cos\left(x\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

Hàm số xác định khi: \(\left\{{}\begin{matrix}4\pi^2-x^2\ge0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2\pi\le x\le2\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

26 tháng 9 2021

https://hoc24.vn/cau-hoi/tim-tap-xac-dinh-cua-yfxdfracsinleft3xrighttan2leftxright-1sqrtdfrac2-cosleftxright1cosleftxright.2039137751323

giúp mình nữa mình tích cho

31 tháng 3 2017

Bài 2. a) Hàm số đã cho không xác định khi và chỉ khi sinx = 0. Từ đồ thị của hàm số y = sinx suy ra các giá trị này của x là x = kπ. Vậy hàm số đã cho có tập xác định là R {kπ, (k ∈ Z)}.

b) Vì -1 ≤ cosx ≤ 1, ∀x nên hàm số đã cho không xác định khi và chỉ khi cosx = 1. Từ đồ thị của hàm số y = cosx suy ra các giá trị này của x là x = k2π. Vậy hàm số đã cho có tập xác định là R {k2π, (k ∈ Z)}.

c) Hàm số đã cho không xác định khi và chỉ khi .

Hàm số đã cho có tập xác định là R {}.

d) Hàm số đã cho không xác định khi và chỉ khi

Hàm số đã cho có tập xác định là R {}.



17 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

TL
1 tháng 12 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

4 tháng 4 2017

a) Cách 1: Ta có:

y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.

Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.

Cách 2:

y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1

Do đó, y' = 0.

b) Cách 1:

Áp dụng công thức tính đạo hàm của hàm số hợp

(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u

Ta được

y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,

vì cos = cos = .

Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.

Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên

cos2 = cos2 '

cos2 = cos2 .

Do đó

y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.

Do đó y' = 0.


 

3 tháng 9 2016

a)\(\forall x\Rightarrow sinx\le1\Rightarrow1-sinx\ge0\)

cosx\(\ge-1\Rightarrow1+cosx\ge0\)

ĐK:cosx\(\ne-1\Leftrightarrow x\ne\pi+k2\pi\)

\(\Rightarrow D=\left\{R\backslash\left\{\pi+k2\pi\right\}\right\}\)

b)ĐK:\(cos\left(2x+\frac{\pi}{3}\right)\ne0\Leftrightarrow2x+\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{12}+\frac{k\pi}{2}\)

\(\Rightarrow D=\left\{R\text{\}\left\{\frac{\pi}{12}+\frac{k\pi}{2}\right\}\right\}\)

22 tháng 5 2017

a) TXĐ: \(D=R\backslash\left\{0\right\}\) tự đối xứng.
\(y\left(-x\right)=\dfrac{cos\left(-2x\right)}{-x}=-\dfrac{cos2x}{x}=-y\left(x\right)\).
Vậy \(y\left(x\right)\) là hàm số lẻ.
b) TXĐ: \(D=R\) tự đối xứng.
\(y\left(-x\right)=\left(-x\right)-sin\left(-x\right)=-x+sinx=-y\left(x\right)\).
Vậy \(y\left(x\right)\) là hàm số lẻ.
c) TXĐ: \(D=R\) tự đối xứng.
\(y\left(-x\right)=\sqrt{1-cos\left(-x\right)}=\sqrt{1-cosx}=y\left(x\right)\).
Vậy \(y\left(x\right)\) là hàm số chẵn.
d) TXĐ: \(D=R\) tự đối xứng.
\(y\left(x\right)=1+cos\left(-x\right)sin\left(\dfrac{3\pi}{2}+2x\right)\)
\(=1+cosxsin\left(2\pi-\left(\dfrac{3\pi}{2}+2x\right)\right)\)
\(=1+cosx.sin\left(\dfrac{\pi}{2}-2x\right)\)
\(=1+cosx.\left[-sin\left(\pi+\dfrac{\pi}{2}-2x\right)\right]\)
\(=1-cosx.sin\left(\dfrac{3\pi}{2}-2x\right)\)
Vậy \(y\left(x\right)\) không là hàm số lẻ cũng không là hàm số chẵn.