Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Số đó là 3x+1=4y+3=5z+1 => 4y+2=3x=5z => 4y+2 chia hết cho 15. Số chia hết cho 15 có số tận cùng là 0 hoặc 5 nên 4y có số tận cùng là 3 hoặc 8. Số 4y chia hết cho 4 nên phải là số chẵn, do đó nó có tận cùng là 8.
Lần lượt thử các số chia hết cho 4: 8 + 2 = 10 không chia hết cho 15; 28+2=30 chia hết.
Vì vậy số đó là 31.
2,Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
1, Số đó là 3x+1=4y+3=5z+1 => 4y+2=3x=5z => 4y+2 chia hết cho 15. Số chia hết cho 15 có số tận cùng là 0 hoặc 5 nên 4y có số tận cùng là 3 hoặc 8. Số 4y chia hết cho 4 nên phải là số chẵn, do đó nó có tận cùng là 8.
Lần lượt thử các số chia hết cho 4: 8 + 2 = 10 không chia hết cho 15; 28+2=30 chia hết.
Vì vậy số đó là 31.
2,Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Bài 1 :
Gọi số tự nhiên nhỏ nhất là n
Ta có : Số 2n chia cho 3,4,5 đều dư 2.
=> 2n - 2 Chia hết cho 3,4,5
=> 2n - 2 thuộc BC(3,4,5 )
Mà n nhỏ nhất => 2n - 2 = BCNN( 3,4,5 )
Mà 4 = 22
=> BCNN( 3,4,5 ) = 22.3.5 = 60
=> 2n - 2 = 60
=> 2n = 60 + 2 = 62
=> n = 62 : 2 = 31
Vậy n = 31 là giá trị cần tìm
Gọi số nhỏ nhất cần tìm là a (a∈N*)
Vì a chia 3 dư 1; chia 4 dư 3; chia 5 dư 1 nên
a - 1 chia hết cho 3
a - 3 chia hết cho 4 ⇒ a - 3 + 4= a - 1 chia hết cho 4
a - 1 chia hết cho 5
⇒ a - 1 ∈ BC( 3; 4; 5)= { 0; 60; 120; 180;.......}
Vì a là số tự nhiên nhỏ nhất nên a = 60.
Vậy số tự nhiên nhỏ nhất cần tìm là 60
Số đó là 3x+1=4y+3=5z+1 => 4y+2=3x=5z => 4y+2 chia hết cho 15.
Số chia hết cho 15 có số tận cùng là 0 hoặc 5 nên 4y có số tận cùng là 3 hoặc 8.
Số 4y chia hết cho 4 nên phải là số chẵn, do đó nó có tận cùng là 8.
Lần lượt thử các số chia hết cho 4:
8 + 2 = 10 không chia hết cho 15; 28+2=30 chia hết.
Vì vậy số đó là 31.
Số đó là 3x+1=4y+3=5z+1 => 4y+2=3x=5z => 4y+2 chia hết cho 15.
Số chia hết cho 15 có số tận cùng là 0 hoặc 5 nên 4y có số tận cùng là 3 hoặc 8.
Số 4y chia hết cho 4 nên phải là số chẵn, do đó nó có tận cùng là 8.
Lần lượt thử các số chia hết cho 4:
8 + 2 = 10 không chia hết cho 15; 28+2=30 chia hết.
=> Số cần tìm là 31
Đáp án:31
Giải thích các bước giải:
gọi số tự nhiên cần tìm là a
vì a chia cho 3,cho 5 đều dư 1
=> a- 1 chia hết cho 3 , cho 5
=> a-1 thuộc BC (3,5)
vì 3 và 5 là 2 số ng.tố cùng nhau
=> BCNN ( 3,5) = 3.5 = 15
=>a-1 thuộc { 15 , 30 , 45 , .....}
=> a thuộc {16 , 31 ,46,....}
mà a là số TN nhỏ nhất và a chia 4 dư 3
=> a = 31
vậy số cần tìm là 31
dễ
ai tích mình lên 10 cái mình tích người ấy cả tháng
gọi số đó là a theo bai ra ta có a + 4 chia hết cho cả 5, 7, 9
--> a + 4 = BCNN( 5, 7, 9) = 315
--> a + 4 = 315 --> a = 311