Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
Do x, y, z,t là 4 số tự nhiên khác nhau nên có \(x+y+z+t\ge4\)
Giả sử \(x+y+z+t\) là số nguyên tố mà \(x+y+z+t\ge4\) nên \(x+y+z+t\)lẻ.
Vì \(x+y+z+t\) lẻ nên số lượng số lẻ có thể là 1 và 3.
Với 1 số lẻ ,giả sử \(x\)là số lẻ ta có: \(x^2+y^2\ne z^2+t^2\)(Do \(x^2+y^2\)lẻ mà \(z^2+t^2\)chẵn).
Với 3 số lẻ, giả sử \(x,y,z\)là 3 số lẻ, ta có \(x^2+y^2\ne z^2+t^2\)( Do \(x^2+y^2\)chẵn mà \(z^2+t^2\)lẻ)
Do đó với mọi \(x,y,z,t\) tự nhiên khác nhau thì \(x+y+z+t\)không thể là số nguyên tố. Vậy \(x+y+z+t\)là hợp số.
Chúc em học tốt!
a) 3x + 3x + 3 = 756
<=> 3x + 3x.33 = 756
<=> 3x(1 + 33) = 756
<=> 3x.28 = 756
<=> 3x = 27
<=> 3x = 33
<=> x = 3
Vậy x = 3
b) 2x - 1.3y + 1 = 12x + y
<=> 2x - 1.3y + 1 = 12x.12y
<=> \(\frac{12^x}{2^{x-1}}=\frac{3^{y+1}}{12^y}\)
<=> \(\frac{12^x}{2^x}.\frac{1}{2}=\frac{3^y}{12^y}.3\)
<=> \(\frac{6^x}{2}=\left(\frac{1}{4}\right)^y.3\)
<=> \(6^{x-1}=\left(\frac{1}{4}\right)^y\)
<=> 6x - 1.4y = 1
<=> \(\hept{\begin{cases}6^{x-1}=1\\4^y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)
Vậy x = 1 ; y = 0
TL:
2x+1.3y=12x2x+1.3y=12x
⇔2x+1.3y=(22.3)x⇔2x+1.3y=(22.3)x
⇔2x+1.3y=22x.3x⇔2x+1.3y=22x.3x
⇔{2x+1=22x3y=3x⇔{2x+1=22x3y=3x
⇔{x+1=2xy=x⇔{x+1=2xy=x
⇔{x=1x=y⇔{x=1x=y
⇔x=y=1
^HT^
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)
Giả sử 22 +2002=m2 (m thuộc N)=>m2 -n2 = 2002
Vì hiệu của 2 số chính phương chia cho 4 ko có số dư là 2
mà 2002 : 4 dư 2
Vậy ko có số tự nhiên n nào để n2 +2002 là số chính phương,
Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:
a. x2 - 2xy + 2y2 + 2y +1
= (x2 - 2xy + y2) +( y 2 + 2y +1)
= (x-y)2 + (y+1)2
b. 4x2 - 12x - y2 + 2y + 8
= (4x2 - 12x + 9 ) - (y2 - 2y +1 )
= (2x-3)2 - (y-1)2
TL:
5x+2. 4y = 50x
= 53 . 41 = 501
= ( 53 . 41 ) : 50
= 6550 : 50
= 131
TL
5x+2. 4y = 50x
= 131
HT