Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)gọi số cần tìm là x
=> x - 1 chia het cho 3=> x-1+3 chia het cho 3 => x+2 chia het cho 3
x-2 chia het cho 4 => x-2+4 chia het cho 4 => x+2 chia het cho 4
x-3 chia het cho 5 => x-3+5 chia het cho 5 => x+2 chia het cho 5
x-4 chia het cho 6 => x-4+6 chia het cho 6 => x+2 chia het cho 6
=> x+2la BCNN(3;4;5;6)
ta co 3=3;4=22;5=5;6=2.3
=>BCNN(3;4;5;6)=22.3.5=60
=>x+2=60=>x=58
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Bài 1:
Giả sử số đó là: a
a chia 11 dư 2 => a - 2 chia hết cho 11 => a - 2 + 33 chia hết cho 11 => a + 31 chia hết cho 11
a chia 12 dư 5 => a - 5 chia hết cho 12 => a - 5 + 36 chia hết cho 12 => a + 31 chia hết cho 12
mà (11;12) = 1
suy ra: a + 31 chia hết cho 132
hay a chia 132 dư 101
Bài 1:
Giả sử số đó là: a
a chia 11 dư 2 => a - 2 chia hết cho 11 => a - 2 + 33 chia hết cho 11 => a + 31 chia hết cho 11
a chia 12 dư 5 => a - 5 chia hết cho 12 => a - 5 + 36 chia hết cho 12 => a + 31 chia hết cho 12
mà (11;12) = 1
suy ra: a + 31 chia hết cho 132
hay a chia 132 dư 101
Ta có:
+) a chia hết cho b được thương là q thì a = b.q
+) Nếu a chia cho b được thương là dư r thì a = b.q + r
=> a - r = b.q => a - r chia hết cho b
Hoặc a + (b - r) = bq + r + (b - r) => a + (b - r) = bq + b = b(q+1) => a + (b - r) chia hết cho b
Ví dụ: a chia cho 5 dư 2 => a - 2 chia hết cho 5 hoặc a + 3 chia hết cho 5
gọi số cần tìm là a
ta có :
a chia 5 dư 2 chia 7 dư 4 chia 9 dư 6
=>a+3 chia hết cho 5;7;9
Vì a chia 5 dư 2=>a-2 chia hết cho 5=>a-2+5 chia hết cho 5=>a+3 chia hết cho 5
a chia 7 dư 4 =>a-4 chia hết cho 7 =>a-4+7 chia hết cho 7=>a+3 chia hết cho 7
a chia 9 dư 6 =>a-6 chia hết cho 9=>a-6+9 chia hết cho 9=>a+3 chia hết cho 9
nên lấy a+3 để xét BC của 5;7;9
....
Gọi số đó là x.
Ta có: x + 2 chia hết cho 3; 4; 5; 6
=> x + 2 là BC(3, 4, 5, 6)
Vì BCNN(3, 4, 5, 6) = 60 => x + 2 = 60 . q (q \(\in\) N)
Do đó x = 60 . q - 2
Mặt khác x chia hết cho 11. => chọn q = 1; 2; 3; 4; ...
Ta thấy q = 7 thì x = 60 x 7 - 2 = 418 chia hết cho 11
Vậy số cần tìm là 418
@@
Gọi số cần tìm là a . Ta có :
a chia 3 dư 1 => a + 2 chia hết cho 3
a chia 4 dư 2 => a + 2 chia hết cho 4
a chia 5 dư 3 => a + 2 chia hết cho 5
a chai 6 dư 4 => a + 2 chia hết cho 6
=> a + 2 thuộc BC ( 3,4,5,6 )
Ta có : 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2.3
BCNN ( 3,4,5,6) = 22 x 3 x 5 = 60
Vậy a + 2 có dạng 60n , a chia hết cho 11 nên 60n - 2 chia hết cho 11
60n - 2 chia hết cho11
=> 60n - 2 + 11.22 chia hết cho 11
=> 60n - 2 + 242 chia hết cho 11
=> 60n + 240 chia hết cho 11
=> 60 ( n + 4 ) chia hết cho 11 . Mà 60 không chia hết cho 11 nên :
n + 4 chia hết cho 11
Vì n thuộc N , n + 4 chia hết cho 11 , Để a nhỏ nhât n phải nhỏ nhất . Vậy n + 4 = 11= >. n = 7
Vậy a = 7.60 - 2 = 420 - 2 = 418
Vâỵ số tự nhiên cần tìm là 418
Tích ủng hộ nha , thank you nhìu
Gọi số tự nhiên cần tìm là : x ( x thuộc N* ; 200 < x < 400)
Khi đó :
x chia 4 dư 3 => x + 1 chia hết cho 4
x chia 5 dư 4 => x + 1 chia hết cho 5
x chia 6 dư 5 = > x + 1 chia hết 6
Nên x + 1 thuộc BC(4;5;6) và 201 < (x + 1) < 401
=> BCNN(4;5;6) = 60
=> BC(4;5;6) = B(60) = {0;60;120;180;240;300;360}
Vậy x + 1 = {240;300;360}
=> x ={239;299;359}
bai nay tớ làm qua rồi nên giải phái của bạn hoàng là đúng
a) Gọi x là số phải tìm thì x + 2 chia hết cho 3, 4, 5, 6 nên x + 2 là bội chung của 3, 4, 5, 6.
BCNN (3, 4, 5, 6) = 60 nên x + 2 = 60n.
Do đó x = 60n - 2 (n = 1, 2, 3, ...).
Ngoài ra x phải là số nhỏ nhất có tính chất trên và x phải chia hết cho 13. Lần lượt cho n bằng 1, 2, 3, ... ta thấy đến n = 10 thì x = 598 chia hết cho 13.