Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số tự nhiên cần tìm là a (\(a\in N\))
ta có: a : 8 dư 5 => a + 3 \(⋮\)8
a : 10 dư 7 => a + 3 \(⋮\)10
a : 15 dư 12 => a + 3 \(⋮\)15
a : 20 dư 17=> a + 3 \(⋮\)20
a nhỏ nhất
\(\Rightarrow\)a + 3 = BCNN(8, 10, 15, 20)
8 = \(2^3\)
10 = 2 . 5
15 = 3 . 5
20 = \(2^2\). 5
BCNN(8 , 10 , 15 , 20) = \(2^3\). 3 . 5 = 120
a + 3 = 120 => a = 120 - 3 = 117
Vậy số tự nhiên cần tìm là 177
em ko chắc chắn bài này đúng hay sai nhưng em nghĩ kết quả đúng cách làm cũng tạm ổn
gọi số cần tìm là a
ta có :
a:8 dư 5
a:10 dư 7
a:15 dư 12
a:20 dư 17
suy ra a +5 chia hết cho 8
a+7chia hết cho 10
a : 8;10;15;20 dư 5;7;12;17
=> a + 2chia hết cho 8;10;15;20
=> a + 2 là BCNN(8;10;15;20)
8 = 23 ; 10=2.5
12 = 22 . 3 ; 17 = 17
=> BCNN (8;10;12;17) = 23 . 6.17 = 680
=> a + 2 = 680
=> a = 680 - 2
=> a = 678
Vậy số cần tìm là 678
Tôi là giáo viên gia sư Toán cấp 1-2-3. Tôi có học trò lớp 6 hỏi bài toán gần giống bài này. Tôi có lời giải cho bài này như sau:
Gọi a là số tự nhiên cần tìm, thương a chia cho 8, 10, 15, 20 lần lượt là b, c, d, e.
Ta có đẳng thức: a = 8b + 5 = 10c + 7 = 15d + 12 = 20e + 17
Suy ra B(8) – 5 = B(10) – 7 = B(15) – 12 = B(20) – 17
Suy ra B(10) – B(8) = 2; B(15) – B(10) = 5; B(20) – B(15) = 5.
B(8) = {0; 8; 16; 30; 40;48; 56; 64; 72; 80; 88; 96; 104; 112; 120…}
B(10) = {0; 10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120; 130; 140; 150; 160;…}
B(15) = {0; 15; 30; 45; 60; 75; 90; 105; 120; 135; 150; 165; …}
B(20) = {0; 20; 40; 60; 80; 100; 120; 140; 160; 180; 200; 220; 240; 260;…}
Để có B(10) – B(8) = 2 ta tìm được cặp 10 – 8; 90 – 88, …
Để có B(15) – B(10) = 5 ta tìm được cặp 15 – 10; 105 – 100, …
Để có B(20) – B(15) = 5 ta tìm được cặp 20 – 15; 80 – 75; 140-135, …
Tuy nhiên để cùng thỏa mãn B(8) – 5 = B(10) – 7 = B(15) – 12 = B(20) – 17 thì ta chọn ở B(8) số 8, ở B(10) số 10, ở B(15) số 15, ở B(20) số 20. Điều này có nghĩa là
8 – 5 = 10 – 7 = 15 – 12 = 20 – 17 = 3.
Con số 3 này gợi ý cho ta cộng thêm vào đẳng thức: a = 8b + 5 = 10c + 7 = 15d + 12 = 20e + 17 hai vế với 3 ta có: a + 3 = 8b + 5 + 3 = 10c + 7 + 3 = 15d + 12 + 3 = 20e + 17 + 3
Suy ra: a + 3 = 8(b + 1) = 10(c + 1) = 15(d + 1) = 20(e + 1)
Suy ra a + 3 chia hết cho 8, 10, 15, 20.
BCNN(8, 10, 15, 20) = 23.3.5 = 120
Suy ra a + 3 thuộc BC(120) = {0; 120; 240; 360; …; 4680; 4800; 4920;…}
Suy ra a thuộc {-3; 117; 237; 357; …; 4677; 4797; 4917;…}
Để a chia hết cho 41 thì chỉ có a = 4797 là thỏa mãn.
Vậy số tự nhiên a nhỏ nhất thỏa mãn điều kiện của bài toán là 4797.