Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt s(n) = 1! + 2! + ... + n!
s(1) = 1 và s(3) = 9 là số chính phương.
s(2) = 3 và s(4) = 33 không là số chính phương.
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương.
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.
Nguồn: yahoo
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
Ta có: n(n+3) là số chính phương
=>Để n(n+3) là số chính phương thì mỗi số cũng phải là số chính phương
=> n là số chính phương và n+3 cũng là số chính phương
=>n=1 và n+3=4
Vậy n=1 thì n(n+3) là số chính phương
giải chi tiết đi các bn