K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 10 2019

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

AH
Akai Haruma
Giáo viên
17 tháng 9 2019

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

6 tháng 5 2016

Ta có: x+2y=1

=> x=1-2y

Thay x=1-2y vào biểu thức A

Ta có: A=(1-2y)2+2y2

A=(2x-1)2 >= 0, dấu = xảy ra <=> x=1/2

Vậy min A = 0 <=> x=1/2 và y=1/4

6 tháng 5 2016

tính x theo y thế vào A tìm GTNN bằng HĐT

11 tháng 7 2018

bài này học từ mấu giáo rồi nhé , sao ghi là lớp 8 vậy

nói xàm lớp 8 chứ

8 tháng 11 2015

\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)

\(Mmin=1\) khi x+2 = 0 => x = -2

8 tháng 11 2015

M=x2 +4x +5

=>M=x(x+4)+5

Ta có:

x(x+4) lớn hơn hoặc bằng 0

=>x(x+4)+5 lớn hơn hoặc bằng 5

=>M lớn hơn hoặc bằng 5

Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4

Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4