K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

a)  Gọi ƯCLN ( 8n + 193; 4n + 3) = d
=>   ( 8n + 193; 4n + 3 ) : d => (8n + 193) - 2.(4n+3)
 =>   ( 8n+193 ) - ( 8n + 6 ) : d
=> 187 : d mà A là phân số tối giản => A  ≠  187
=> n  ≠   11k + 2 (k ∈  N)
=>  n  ≠   17m + 12 (m   ∈  N )
b) n = 156 => A = 77/19
     n = 165 => A =  89/39 
      n = 167 => A = 139/61

3 tháng 3 2019

mình giải ở trang này nhé         (http://i5.fapality.com/contents/albums/preview/240x999/1000/1934/preview.jpg)

26 tháng 5 2017

a) \(A=\frac{8n+193}{4n+3}\)

\(A=\frac{8n+6+187}{4n+3}\)

\(A=2+\frac{187}{4n+3}\)

Để A là số tự nhiên thì \(187⋮4n+3\)

\(\Rightarrow4n+3\inƯ\left(187\right)=\left\{\text{±}1;\text{±}11;\text{±}17;\text{±}187\right\}\)

mà A là số tự nhiên

\(4n+3\in\left\{1;11;17;187\right\}\)

Ta có bảng sau:

4n+311117187
4n-2814184
n-0,523,546

Vậy \(n\in\left\{-0,5;2;3,5;46\right\}\)

mà n là số tự nhiên

\(\Rightarrow n\in\left\{2;46\right\}\)

Câu b, c thì chịu. ☺

3 tháng 7 2018

a. Ta có:

\(\frac{8n+193}{4n+3}=\frac{2.4n+2.3+187}{4n+3}\)

                   \(=\frac{2.\left(4n+3\right)+187}{4n+3}\)

                   \(=2+\frac{187}{4n+3}\)

Để M có giá trị là số tự nhiên thì \(4n+3\)phải là ước tự nhiên của \(187=\left\{1;11;17;187\right\}\)

\(\left(+\right)4n+3=1\Rightarrow4n=1-3=-2\Leftrightarrow n=-\frac{1}{2}\)( không thỏa mãn n là số tự nhiên )

\(\left(+\right)4n+3=11\Rightarrow4n=11-3=8\Leftrightarrow n=2\)( thỏa mãn )

\(\left(+\right)4n+3=17\Rightarrow4n=14\Leftrightarrow n=\frac{7}{2}\)( không thỏa mãn n là số tự nhiên )

\(\left(+\right)4n+3=187\Rightarrow4n=187-3=184\Leftrightarrow n=46\)( thỏa mãn )

Vậy \(n\in\left\{2;46\right\}.\)

b. Gọi ước chung của 8n + 193 và 4n + 3 là d

Ta có:

\(\hept{\begin{cases}8n+193⋮d\\4n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}8n+193⋮d\\2\left(4n+3\right)⋮d\end{cases}}\)

\(\Rightarrow8n+193-2\left(4n+3\right)⋮d\)

\(\Leftrightarrow187⋮d\)

\(\Rightarrow d\inƯ\left(187\right)=\left\{1;11;17;187\right\}\)

Thử:

\(n=156\Rightarrow M=\frac{77}{19}\)

\(n=165\Rightarrow M=\frac{89}{39}\)

\(n=167\Rightarrow M=\frac{139}{61}.\)

                             

3 tháng 7 2018

\(M=\frac{8n+193}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\inℕ^∗\Rightarrow\frac{187}{4n+3}\inℕ^∗\)

Vì \(n\inℕ^∗\Rightarrow4n+3\inℕ^∗\Rightarrow4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{\pm1;\pm11;\pm17;\pm187\right\}\)

\(\Rightarrow n\in\left\{-1;2;-5;46\right\}\)

b. M rút gọn được <=> \(\frac{187}{4n+3}\)rút gọn được => 4n+3 chia hết cho 11, 17 hoặc 187

Mà \(150\le n\le170\Rightarrow603\le4n+3\le683\)

Ta có: trong khoảng từ 603 -> 683 chỉ có:

 + 605, 616, ..., 682 chia hết cho 11 => 4n+3 \(\in\){605, 616, ..., 682} => Tìm n

 + 612, 629, ..., 680 chia hết cho 17 => \(4n+3\in\left\{612,629,...,680\right\}\)=> tìm n

 + không có số nào chia hết cho 187

23 tháng 5 2016

a) Đặt A=8n+1934n+3 =2.(4n+3)+1874n+3 =2+1874n+3 

187÷4n+34n+3Ư(187)={17;11;187}

+ 4n + 3 = 11  => n = 2

+ 4n +3 = 187 => n = 46

+ 4n + 3 = 17 => 4n = 14 ( loại )

Vậy n = 2 và 46

B)  Gọi ƯCLN ( 8n + 193; 4n + 3) = d

=>   ( 8n + 193; 4n + 3 ) : d => (8n + 193) - 2.(4n+3)

 =>   ( 8n+193 ) - ( 8n + 6 ) : d

=> 187 : d mà A là phân số tối giản => A 

c) n= 156 =>A = 77/19

    N = 165 => A = 88/39

     n = 167 => A = 139/61