Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để
2n-7.7 là số nguyên tố thì
2n-7=1
mà 20=1
vậy 2n-7=20
n-7=0
n=0+7
n=7
vậy n=7
\(A=n^3-2n^2+2n-4\)
\(=n^2\left(n-2\right)+2\left(n-2\right)\)
\(=\left(n-2\right)\left(n^2+2\right)\)
Để A là số nguyên tố thì \(n-2=1\left(h\right)n^2+2=1\)
Mà \(n^2\ge0\Rightarrow n^2+2\ge2>1\Rightarrow n-2=1\Rightarrow n=3\)
Thay vào A ta được A=11 ( LSNT )
Vậy n=3
Vì p là tích của 2 số là (n-2) và (n^2+n-1)
=> p là nguyên tố thì một trong 2 số trên phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài)
Ta luôn có n^2+n-1 = n^2+1 +(n-2) > (n-2)
Vậy => n-2=1 => n=3 => p=11
a) Xét \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)
Để p/s trên đạt giá trị nguyên thì (n+1) thuộc ư(3)
Bạn tự liệt kê
b) Đặt \(A=\left(n-1\right)\left(n^2+2n+3\right)\)
Vì A là số nguyên tô nên A chỉ có hai ước là 1 và chính nó
Suy ra các trường hợp : \(\begin{cases}n-1=1\\n^2+2n+3=A\end{cases}\) hoặc \(\begin{cases}n-1=A\\n^2+2n+3=1\end{cases}\)
Suy ra n = 2 thỏa mãn đề bài
a)n + 4 chia hết cho n + 1
=> n + 1 + 3 chia hết cho n + 1
Do n + 1 chia hết cho n + 1 => 3 chia hết cho n + 1
Mà \(n\in N\Rightarrow n+1\ge1\)
=> \(n+1\in\left\{1;3\right\}\)
=> \(n\in\left\{0;2\right\}\)
b) Ta đã biết số nguyên tố chỉ có 2 ước duy nhất là 1 và chính nó
Mà \(n^2+2n+3\ge3\) với mọi n là số tự nhiên
=> n - 1 = 1; n2 + 2n + 3 là số nguyên tố
=> n = 2
Thử lại ta thấy: n2 + 2n + 3 = 22 + 2.2 + 3 = 11, là số nguyên tố, thỏa mãn
Vậy n = 2
Để (n-1).(n2+2n+3) la số nhuyen to
\(\Rightarrow\)n-1=1 hoac n2+2n+3=1
Voi n-1=1\(\Rightarrow\)n=2, ta co:
n2+2n+3=2.2+2.2+3=11
Voi n2+2n+3=1\(\Rightarrow\)n=\(\phi\)
Vay n=2
Số ngtố có 2 ước là 1 và chính nó
<=> hoặc n - 1 = 1 hoặc n2 + 2n + 3 =1
Đến đây là giải dc rùi!
Xét 2n-3=0 thì 22n-3=1(loại)
Xét 2n-3=1 thì 22n-3=2(thỏa mãn)
Xét 2n-3>1 thì 22n-3 là số chẵn mà số chắn duy nhất là số nguyên tố là 2
Vậy 2n-3=1.Suy ra:n=2