K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16 

Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8 

TH1 2^n có tận cùng là 2 => n = 4k+1 

=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10) 

ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a 

do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3 

=> a.b = a.2 chia hết cho 6 (1) 

TH2 2^n có tận cùng là 4 => n = 4k +2 

=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10) 

=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a 

=> 4(2^4k - 1) = 10 a 

ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3 

=> a.b chia hết cho 6 (2) 

Th3 2^n có tận cùng là 8 => n = 4k +3 

TH 3 2^n có tận cùng là 6 => n = 4k 

bằng cách làm tương tự ta luôn có a.b chia hết cho 6

27 tháng 3 2020

Ta có:\(2^n⋮2;10a⋮2\Rightarrow b⋮2\Rightarrow ab⋮2\)

Ta chỉ cần chứng minh \(ab⋮3\) nữa là OK

Đặt \(n=4k+r\left(0\le n\le3;k\in Z^+;r\in N\right)\)

Nếu \(r=0\Rightarrow2^n=2^{4k+0}=2^{4k}=16^k\) có tận cùng là 6 nên b=6 \(\Rightarrow ab⋮\left(đpcm\right)\)

Nếu \(r\ne0\) thì \(2^n-2^r=2^{4k+r}-2^r=2^r\left(16^k-1\right)⋮10\Rightarrow2^n\) có tận cùng là \(2^r\)

\(\Rightarrow b=2^r\Rightarrow10a=2^n-2^r=2^r\left(16^k-1\right)⋮3\Rightarrow ab⋮3\)

\(\RightarrowĐPCM\)

21 tháng 8 2016

Ta có a = 3. q + 1 (q là số tự nhiên) 
b = 3 . p + 2 (p là số tự nhiên) 
a.b = (3q + 1)(3p + 2) 
= 9qp + 6q + 3p + 2 
Tổng trên có 9qp, 6q, 3p đều chia hết cho 3 do đó Tổng chia cho 3 dư 2, nghĩa là ab chia cho 3 dư 2.

21 tháng 8 2016

Câu hỏi của Dung Tr - Toán lớp 6 - Học toán với OnlineMath

25 tháng 7 2016

Khó quá đi, bà đưa ra câu hỏi này chắc tui bó cả chân ấy chứ 

Hehehe

25 tháng 7 2016

ab nhỏ nhất chia hết cho 2 là 10

abc nhỏ nhất chia hết cho 3 là 102

abcd nhỏ nhất chia hết cho 4 là 1004

abcde nhỏ nhất chia hết cho 5 là 10000

abcdef nhỏ nhất chia hết cho 6 là 100006

abcdefg nhỏ nhất chia hết cho 7 là 1000160

abcdefgh nhỏ nhất chia hết cho 8 là 10000000

abcdefghi nhỏ nhất chia hết cho 9 là 100000008

9 tháng 12 2019

Câu hỏi của Mai Hà My - Toán lớp 6 - Học toán với OnlineMath

20 tháng 6 2018

\(A=n^2+\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=n^2+n^2+2n+1+n^2+4n+4+n^2+6n+9\)

\(=4n^2+12n+14=\left(2n\right)^2+2\cdot2n\cdot3+3^2+5=\left(2n+3\right)^2+5\)

vì \(5⋮5\)để \(A⋮5\Rightarrow\left(2n+3\right)^2⋮5\Rightarrow2n+3⋮5\Rightarrow2n-2+5⋮5\Rightarrow2n-2⋮5\Rightarrow2\left(n-1\right)⋮5\Rightarrow n-1⋮5\)

vì 1 chia 5 dư 1 để n-1 chia hết cho 1 suy ra n chia cho 5 phải dư 1

\(\Rightarrow n=\left(6;11;16;...;5n+1\right)\)

vậy \(n=\left(6;11;16;...;5n+1\right)\)thì \(A⋮5\)