Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+Gọi a là số cần tìm .
Nếu a + 1 thì a chia hết cho 4 .
0 : 4 = 0
nên chia cho 4 dư 3 thì 0 + 3 = 3
đáp số : 3
k mình nha
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59
Gọi số tự nhiên đó là a.
Vì a chia 4 dư 3 nên a có dạng 4k+3 (aEN=>kEN).
Để a nhỏ nhất.
=>k nhỏ nhất.
Mà kEN
=>k=0.
=>a=3.
Vậy.......
N
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> (x - 1) chia hết 2
(x - 2) chia hết 3
(x - 3) chia hết 4
(x - 4) chia hết 5
(x - 5) chia hết 6
(x - 6) chia hết
=> (x + 1) chia hết cho cả 2, 3, 4, 5, 6, 7
=> (x + 1) là BC(2;3;4;5;6;7)
Mà x nhỏ nhất
=>( x+ 1) là BCNN(2;3;4;5;6;7) = 5.12.7 = 420 => x = 419
Nếu mình đúng thì các bạn k mình nhé
Nhận xét:
3 - 1 = 2
4 - 2 = 2
5 - 3 = 2
6 - 4 = 2
Gọi số cần tìm là a
thì a + 2 chia hết cho cả 3,4,5,6
Ta có 3 = 3 x 1
4 = 2 x 2
3 = 5 x 1
6 = 3 x 2
3 x 2 x 2 x 5 = 60
a + 2 là bội của 60
a = (60 - 2 ) + k x 60
a= 58 + k x 60
a chia hết cho 11 mà 58: 11 = 5 (dư 3); 11 - 3 = 8
Vậy (k x 60) : 11 ( dư 8)
Dùng phép thử chọn để tìm k ta được k = 6
Vậy a = 58 + 6 x 60 = 418
Gọi số đó là: a ( a \(\in\)N* )
vì a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
=> a + 2 chia hết cho 3; 4;5;6
=> a + 2 \(\in BC\left(3;4;5;6\right)\)
Mà a nhỏ nhất => a + 2 nhỏ nhất
=> a + 2 = BCNN(3;4;5;6) = 60
vì a chia hết cho 11
=> a + 2 chia 11 dư 2
Mà 60 không chia 11 dư 2
=> không tìm được a
Gọi số cần tìm là x
Theo đề bài ta có : x chia 3 dư 1 , x chia 4 dư 2 , x chia 5 dư 3 , x chia 6 dư 4 và chia hết cho 11
=> x + 2 chia hết cho 3, 4, 5, 6
=> x + 2 thuộc BC(3, 4, 5, 6)
BCNN(3, 4, 5, 6) = 22 . 3 . 5 = 60
BC(3,4,5,6) = B(60) = { 0 ; 60 ; 120 ; 180 ; ... 420 . 480 ; ... }
=> x + 2 \(\in\){ 0 ; 60 ; 120 ; 180 ; ... 420 . 480 ; ... }
=> x \(\in\){ -2 ; 58 ; 118 ; 178 ; ... ; 418 ; 478 ; ... }
x chia hết cho 11 => x \(\in\)B(11) = { 0 ; 11 ; 22 ; ... ; 385 ; 396 ; 407 ; 418 ; ... }
Cả hai tập hợp xuất hiện số 418
=> x = 418
Vậy số cần tìm là 418
Nếu số cần tìm cộng thêm 1 thì sẽ chia hết cho 2, 3, 4, 5
=> Số bé nhất chia hết cho cả 2; 3; 4; 5 là BSCNN(2;3;4;5)=60
=> số cần tìm là 60-1=59
Gọi số tự nhiên cần tìm là: \(x\)(\(x\in N\))
Theo đề bài, ta có:
x chia 2 dư 1
x chia 3 dư 2
x chia 4 dư 3
x chia 5 dư 4
Từ đó, suy ra:
\(\left(x+1\right)⋮2\)
\(\left(x+1\right)⋮3\)
\(\left(x+1\right)⋮4\)
\(\left(x+1\right)⋮5\)
Vì x là số tự nhiên bé nhất nên x+1= BCNN(2;3;4;5)
\(\Rightarrow x+1=60\)
\(\Rightarrow x=59\)
Vậy số tự nhiên cần tìm là: \(59\)