Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi số cần tìm là abcd ta có:
d=3b ; c=8a và a+b+c+d chia hết cho 9.
Vì a khác 0 và c<10 nên a chỉ có thể bằng 1 và c bằng 8.
a+b+c+d = b+d+9 chia hết cho 9
=> b+d chia hết cho 9.
+ Nếu b+d = 0 thì thõa mãn, ta lập được số 1080.
+ Nếu b+d = 9 thì b+3b=9=> 4b=9 => Không tìm được b,d
+ Nếu b+d = 18 thì 4b=18 => Không tìm được b,d
Bài 2: Số đó chia hết cho 4 và 5 nên y=0
Vậy 6+x+1+4+y = 11+x chia hết cho 3
=> x=1, 4; 7
Vậy ta tìm được 3 số: 61140 ; 64140; 67140
Số đó có dạng: abcd (a khác 0)
Theo bài ra có: b=2a và \(c=\frac{2b}{3}=\frac{4a}{3}\)
Để số đó chia hết cho 5 => d=0 hoặc d=5
+/ d=0 => số có dạng: abc0
Tổng các chữ số là: a+b+c+d=a+2a+\(\frac{4a}{3}\)+0=\(\frac{13a}{3}\)Để số đó chia hết cho 9 thì \(\frac{13a}{3}\)chia hết cho 9 => Không có giá trị thỏa mãn,
+/ d=5 => số có dạng: abc5
Tổng các chữ số là: a+b+c+d=a+2a+\(\frac{4a}{3}\)+5=\(\frac{13a}{3}+5\)Để số đó chia hết cho 9 thì \(\frac{13a}{3}+5\)chia hết cho 9 => a=3
a=3 => b=2x3=6; c\(=\frac{4x3}{3}=4\)
ĐS: Số cần tìm là: 3645
Gọi số cần tìm là abcd (a khác 0; a,b,c,d là các chữ số; d chẵn)
Ta có:
ab = 3 x c = 2 x d
=> \(\begin{cases}ab⋮3\\ab⋮2\end{cases}\). Mà d chẵn \(\Rightarrow d⋮2\) \(\Rightarrow\begin{cases}ab⋮3\\ab⋮4\end{cases}\)
Mà (3;4)=1 => \(ab⋮12\) (1)
Mặt khác, do d là chữ số nên \(2.d\le18\) => \(ab\le18\) (2)
Từ (1) và (2) => ab = 12; c = 4; d = 6
Vậy số cần tìm là 1246
Gọi số cần tìm là abcd ta có:
d=3b ; c=8a và a+b+c+d chia hết cho 9.
Vì a khác 0 và c<10 nên a chỉ có thể bằng 1 và c bằng 8.
a+b+c+d = b+d+9 chia hết cho 9
=> b+d chia hết cho 9.
+ Nếu b+d = 0 thì thõa mãn, ta lập được số 1080.
+ Nếu b+d = 9 thì b+3b=9=> 4b=9 => Không tìm được b,d
+ Nếu b+d = 18 thì 4b=18 => Không tìm được b,d\
HT