Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
VÌ: \(x^3+y^3+1-3xy=\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\)
Do: \(x^3+y^3+1-3xy\) là 1 số nguyên tố
=> \(\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\) là 1 số nguyên tố.
Do: \(x+y+1>1\left(x,y\inℕ^∗\right)\)
=> \(x^2+y^2-xy-x-y+1=1\)
<=> \(2x^2+2y^2-2xy-2x-2y+2=2\)
<=> \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)
Do: \(\left(x-y\right)^2;\left(x-1\right)^2;\left(y-1\right)^2\) đều là các số chính phương.
=> Ta xét 3 trường hợp sau:
\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=1\\\left(y-1\right)^2=1\end{cases}}\) ; \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=0\\\left(y-1\right)^2=1\end{cases}}\) ; \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=1\\\left(y-1\right)^2=0\end{cases}}\)
Do: x; y thuộc N*
=> vs TH1 được: \(x=y=2\)
THỬ LẠI THÌ: \(x^3+y^3+1-3xy=8+8+1-12=5\) (CHỌN)
TH2; TH3 tương tự ra \(x=1;y=2\) và \(x=2;y=1\)
THỬ LẠI \(\orbr{\begin{cases}x^3+y^3+1-3xy=1^3+2^3+1-3.1.2=4\\x^3+y^3+1-3xy=2^3+1^3+1-3.2.1=4\end{cases}}\) (ĐỀU LOẠI HẾT).
VẬY \(x=y=2\) là nghiệm duy nhất.
\(x^3-x^2+x-1=x^2\left(x-1\right)+\left(x-1\right)=\left(x^2+1\right)\left(x-1\right)=p\)
Vì p nguyên tố nên có 2 trường hợp:\(\orbr{\begin{cases}x-1=1\\x^2+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}P=5\\P=-1\left(sai\right)\end{cases}}}\)
Vậy x=2 .BẤM ĐÚNG CHO TUI NHÉ
có \(x^3-x^2+x-1=p\)\(\Leftrightarrow x^2\left(x-1\right)+\left(x-1\right)=p\)\(\Leftrightarrow\left(x^2+1\right)\left(x-1\right)=p\)
mà x\(\in\)Z suy ra \(x^2+1\)và x-1 là ước của p mà \(x^2\)+1 -(x-1)=\(x^2-x+2\)= \(x^2-x+\frac{1}{4}\)+\(\frac{3}{4}\)=\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)>0 suy ra \(x^2\)+1>x-1 và x-1 dương mặt khác p là snt nên p chỉ có 2 ước dương là 1 và chính nó suy ra x-1= 1 và\(x^2\)+1=p suy ra x=2 thỏa mãn đề bài khi đó p= \(2^2\)+1=5