K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2023

AÁ 

7 tháng 8 2023

\(p^2-2q^2=1\)

\(\Rightarrow p^2=2q^2+1\)

\(\Rightarrow p\) là số lẻ

Đặt \(p=2n+1\Rightarrow p^2=4n^2+4n+1\)

mà \(p^2=2q^2+1\)

\(\Rightarrow4n^2+4n+1=2q^2+1\)

\(\Rightarrow2\left(2n^2+2n\right)=2q\)

\(\Rightarrow2n^2+2n=q\)

\(\Rightarrow2\left(n^2+n\right)=q\)

\(\Rightarrow q\) là số chẵn

mà \(q\) là số nguyên tố

\(\Rightarrow q=2\)

\(\Rightarrow p^2=2.2^2+1=9\Rightarrow p=3\)

Vậy \(\left(p;q\right)\in\left\{3;2\right\}\) thỏa mãn đề bài

7 tháng 8 2023

Ta có: \(p^2-2q^2=1\)

Do 1 là số lẻ nên \(2q^2\) chẵn và \(p\) lẻ  

\(\Rightarrow p^2-1=2q^2\)

\(\Leftrightarrow\left(p-1\right)\left(p+1\right)=2q^2\)

Mà \(p\) lẻ nên \(p+1,p-1\) đều là chẵn 

\(\Rightarrow\left(q-1\right)\left(q+1\right)\) ⋮ 4

\(\Leftrightarrow q^2\) ⋮ 2 \(\Rightarrow q\) ⋮ 2 \(\Rightarrow q=2\)

\(\Rightarrow p^2=2\cdot2^2+1=9\Rightarrow q=3\)

Vậy: (q;p) là (2;3)

x^2y -2x=5

x( xy-2)=5

Nếu x =1 và xy-2 =5

Suy ra x =1 và y=7

Nếu x = -1 và xy-2 = -5

Suy ra x = -1 và y=3

Tương tự bạn có thể làm lại với 2 TH rồi KL

TH3 : x = 5; xy-2 =1

TH4: x= -5 ; xy-2 = -1

18 tháng 10 2023

Sorry bạn nhưng mình từng giải bài này

Ta có phương trình đơn giản lại tương tự phương trình Pell như sau: $x^2 - 6y^2 = -1$ Ta có thể giải phương trình này bằng phương pháp Pell như sau: Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 5, y_1 = 1$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên cho đến khi tìm được một nghiệm thỏa mãn $x^2 - 6y^2 = -1$. $x_1 = 5, y_1 = 1$ $x_2 = 29, y_2 = 5$ $x_3 = 169, y_3 = 29$ $x_4 = 985, y_4 = 169$ $x_5 = 5741, y_5 = 985$ Vậy $(x, y) = (5741, 985)$ là một nghiệm của phương trình $x^2 - 6y^2 = -1$. Ta kiểm tra xem $x$ và $y$ có phải đều là số nguyên tố hay không. Ta nhận thấy rằng $x$ chia hết cho 7, do đó $x$ không phải là số nguyên tố. Tuy nhiên, ta thấy rằng $y$ là số nguyên tố. Vì vậy, đáp án của bài toán là $(x, y) = (5741, 985)$ với $y$ là số nguyên tố.