Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}\)
\(=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}\)
\(=2+\frac{1}{n-1}\)
Do đó, (n-1)\(\in\)Ư(1)
\(\Rightarrow\)n- 1= -1 và n - 1=1
\(\Rightarrow\)n=0 và n=2
a) 3n+11 chi hết cho n
mà 3n cũng chia hết cho n
=> 3n+11- 3n chia hết cho n
=> 11 chia hết cho n
=> n thuộc ước 11=> n thuộc { 1; -1; 11;-11}
Chào bạn,bây giờ mình sẽ giúp bạn câu này
2n-3:n+1
2n-3=2.n+2.1-5-2.(n+1)-5
Để 2n-3 chia hết cho n+1 thì 2.(n+1)-5: n+1
mà 2.(n+1) chia hết cho n+1 suy ra 5:n+1
=>n+1 thuộc Ư(5)
=>n+1 thuộc (-5;-1;1;5)
n thuộc (-6;-2;0;4)
Vì mình cũng chơi pokiwar nên mình giúp bạn câu này,chọn mình nha.Dấu hai chấm là kí hiệu chia hết vì mình không viết đc ba dấu chấm nên phải kí hiệu là hai chấm
Ta có : 2n - 3 chia hết cho n + 1
<=> 2n + 2 - 5 chia hết n + 1
<=> 2.(n + 1) - 5 chia hết cho n + 1
<=> 5 chia hết cho n + 1
<=> n + 1 thuộc Ư(5) = {-1;-5;5;1}
Ta có bảng:
n + 1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
Đặt UCLN(6n+1,2n-1)=d
2n-1 chia het cho d => 6n+1 chia het cho d
[(6n+5) - (6n+3)] chia het cho d
2 chia het cho d nhung 6n+5 va 6n+3 le
=> d=1.
Vậy n=1.
Để \(A=\frac{6n+5}{2n-1}\)có giá trị là số nguyên
\(\Rightarrow6n+5⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)
Do \(3\left(2n-1\right)⋮2n-1\)
\(\Leftrightarrow8⋮2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(8\right)\)
\(\Leftrightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Ta có bảng sau:
2n-1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 3/2 | -1/2 | 5/2 | -3/2 | 9/2 | -7/2 |
Do n cần tìm là số nguyên
=> n = { 1 ; 0 }
\(\frac{6n+5}{3n-2}\inℤ\Leftrightarrow6n+5⋮3n-2\)
\(\Rightarrow6n-4+9⋮3n-2\)
\(\Rightarrow2\left(3n-2\right)+9⋮3n-2\)
\(2\left(3n-2\right)⋮3n-2\)
\(\Rightarrow9⋮3n-2\)
\(\Rightarrow3n-2\inƯ\left(9\right)\)
\(\Rightarrow3n+2\in\left\{-1;1;-3;3;-9;9\right\}\)
\(\Rightarrow3n\in\left\{-3;-1;-5;1;-11;7\right\}\)
\(\Rightarrow n\in\left\{-1;\frac{-1}{3};\frac{-5}{3};\frac{1}{3};\frac{-11}{3};\frac{7}{3}\right\}\) mà n là số nguyên
\(\Rightarrow n=-1\)
\(E=\frac{6n+5}{3n-2}=\frac{6n-4+9}{3n-2}=2+\frac{9}{3n-2}\)
Để \(E\in Z\Rightarrow\frac{9}{3n-2}\in Z\)
\(\Rightarrow3n-2\inƯ\left(9\right)=\left(1;-1;3;-3;9;-9\right)\)
\(\Rightarrow3n\in\left(3;1;5;-1;11;-7\right)\)
Vì \(n\in Z\Rightarrow3n=3\Leftrightarrow n=1\)
Để \(\frac{3n-1}{n-1}\)là số nguyên thì 3n-1 chia hết cho n-1 nên \(\frac{3n-1}{n-1}=\frac{2n+n-1}{n-1}=\frac{2n+\left(n-1\right)}{n-1}\Rightarrow2n⋮n-1\)nhưng \(n-1⋮n-1\Rightarrow2n⋮n-1\)\(\Rightarrow2⋮n-1,n⋮n-1\Rightarrow n-1\in\left\{1;-1;2;-2\right\}\)mà \(n\ne1\left(n-1=1-1=0\right)\)\(\Rightarrow n\in\left\{-1;2;-2\right\}\)
Để A là số nguyên thì (n3+3n2+2n+5) chia hết cho (n+2)
(n3+2n2+n2+2n+5) chia hết cho (n+2)
[n2(n+2)+n(n+2)+5] chia hết cho (n+2)
[(n2+n)(n+2)+5] chia hết cho (n+2)
=>5 chia hết cho n+2 hay n+2EƯ(5)={1;-1;5;-5}
=>nE{-1;-3;2;-7}
Vậy để A nguyên thì nE{-1;-3;2;-7}