Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)
\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)
Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên
Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên
=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Mà x là số nguyên lớn nhất => x = 10
Vậy x = 10
(n^4-3n^3+n^2+3n+7)/(n-3)
=(n^4-3n^3+n^2-3n+6n-18+25)/(n-3)
=(n^3(n-3)+n(n-3)+6(n-3)+25)/(n-3)
=((n-3)(n^3+n+6)+25)/(n-3)
=(n-3)(n^3+n+6)/(n-3)+25/(n-3)
=n^3+n+6+25/(n-3)
khi n nguyên thì n^3+n+6 nguyên nên để n^3+n+6+25/(n-3) nguyên thì 25/(n-3) nguyên
suy ra n-3 thuộc ước của 25
n đạt giá trị lớn nhất khi n-3=25
n=28
(n
ta có:
n4+3n3-22n2+6n : n2+2 = n2+3n-24 dư 48
=> n4+3n3-22n2+6n = (n2+3n-24) + \(\frac{48}{n^2+2}\)
=> n2+2 thuộc Ư(48) = {-1;-2;-3;-4;-6;-8;-12;-16;-24;-48;1;2;3;4;6;8;12;16;24;48} (n2+2 luôn dương)
=> n2 = {2-2; 3-2; 4-2;.........} = {0; 1; 2; 3; 4; 6;......... }
mà A có giá trị nguyên nên n2 = {0; 1; 4}
=> n = {0; ±1; ±2}
Để phân số M đạt giá trị nguyên thì 3n - 1 phải chia hết cho n - 1
3n - 1 = 3n - 3 + 2 = 3(n-1) + 2
Vì 3(n-1) \(⋮\)n-1 nên 2 cũng chia hết cho n - 1
Hay n - 1 \(\in\)Ư(2)
n - 1 = { 1,2,-1,-2}
=> n = 2 ; 3 ; 0 ; -1
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Baif1:
Vì biểu thức trên cần lớn hơn 1,nên ta có bất phương trình :
\(\frac{x}{x-6}-\frac{6}{x-9}>1\)
\(\Leftrightarrow\frac{x^2-15x+36}{\left(x-6\right)\left(x-9\right)}\ge\frac{x^2-15x+54}{\left(x-6\right)\left(x-9\right)}\)
\(\Leftrightarrow\frac{x^2-15x+36-\left(x^2-15x+54\right)}{\left(x-6\right)\left(x-9\right)}>0\)
\(\Leftrightarrow\frac{-18}{\left(x-6\right)\left(x-9\right)}>0\)
Vì \(-18< 0\Rightarrow\left(x-6\right)\left(x-9\right)< 0\)
Xét hai trường hợp:
TH1:\(\orbr{\begin{cases}x-6>0\\x-9< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>6\\x< 9\end{cases}}}\)
\(\Leftrightarrow6< x< 9\)(tm)(1)
TH2:\(\orbr{\begin{cases}x-6< 0\\x-9>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 6\\x>9\end{cases}\Leftrightarrow}9< x< 6\left(ktm\right)}\)(2)
Từ (1) và (2) \(\Rightarrow6< x< 9\) lại có \(x\in Z\Rightarrow x\in\left\{7;8\right\}\)
Bài 2:
Ta có:\(2\left(n+2\right)^2+n\left(1-n\right)\ge\left(n-5\right)\left(n+5\right)\)
\(\Leftrightarrow2n^2+8n+8+n-n^2\ge n^2-25\)
\(\Leftrightarrow2n^2-n^2-n^2+8n+n\ge-25-8\)
\(\Leftrightarrow9n\ge-33\)
\(\Leftrightarrow n\ge\frac{-33}{9}\)(1)
Để n không âm thỏa mãn 7-3n là số nguyên,thì \(3n\in Z\Rightarrow n\inℤ+\)(2)
Từ (1) và (2) \(\Rightarrow n\in\left\{0;1;2;............\right\}\)
Đề bài 2 có sai không vậy chứ nó có nhiều sỗ quá bạn ạ
n-3={-7,-1,1,7)
n={-4,2,4,10}