Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này trên violympic nhung mình không biết cách giải chi tiết mà chỉ biết a=8
a) A \(=\frac{2n-1}{n-3}=\frac{2n-6}{n-3}+\frac{5}{n-3}\) nguyên
<=> n - 3 thuộc Ư(5) = {-5; -1; 1; 5}
<=> n thuộc {-2; 2; 4; 8}
b) A lớn nhất <=> \(\frac{5}{n-3}\) lớn nhất <=> n - 3 là số nguyên dương nhỏ nhất
<=> n - 3 = 1 <=> n = 4
A=\(\frac{2n-1}{n-3}\)
a)Để A có giá trị nguyên thì 2n-1 phải chia hết cho n-3
2n-1
=2n-6+6-1
=2.(n-3)+5
n-3 chia hết cho n-3 nên 2(n-3) chia hết cho n-3
Vậy 5 cũng phải chia hết cho n-3
+n-3=1=>n=4
+n-3=5=>n=8
+n-3=-1=>n=2
+n-3=-5=>n=-2
Vậy n thuộc -2;2;8;4
b)Dễ thấy,để A có giá trị lớn nhất n=8
Chúc em học tốt^^
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0
Ta có: \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
...
\(\frac{1}{2014^2}<\frac{1}{2013.2014}\)
Cộng vế theo vế ta được
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}<1\)
Ta có : \(A\)\(\ge0\) và \(A<1\left(cmt\right)\)
=> [A]=0
A = \(\dfrac{2a-1}{a-3}\)
A = \(\dfrac{2\left(a-3\right)+5}{a-3}\)
A = 2 + \(\dfrac{5}{a-3}\)
Nếu a < 3 ⇒ a - 3 < 0 ⇒ A < 2
Nếu a > 3 ⇒ a - 3 > 0; a \(\in\) Z; a > 0
⇒ \(\dfrac{5}{a-3}\) đạt giá trị lớn nhất ⇔ a - 3 = 1 ⇒ a = 4
Vậy Amax = 2 + \(\dfrac{5}{4-3}\) = 7 ⇔ a = 4
\(A=\dfrac{2a-1}{a-3}=\dfrac{2a-6+5}{a-3}=\dfrac{2\left(a-3\right)+5}{a-3}=2+\dfrac{5}{a-3}\left(a\ne3\right)\)
mà \(\dfrac{5}{a-3}\le5\left(a\in z\right)\)
\(\Rightarrow A=2+\dfrac{5}{a-3}\le2+5=7\)
Dấu bằng xảy ra khi \(a-3=1\Rightarrow a=4\)
\(\Rightarrow Max\left(A\right)=7\left(a=4\right)\)