Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét : \(\frac{4a^3+14a^2+6a+12}{1+2a}=\frac{2a^2\left(2a+1\right)+6a\left(2a+1\right)+12}{1+2a}=2a^2+6a+\frac{12}{1+2a}\)
Để \(\left(4a^3+14a^2+6a+12\right)⋮\left(1+2a\right)\) thì \(1+2a\inƯ\left(12\right)\)
Bạn tự liệt kê
Ta có
\(4a^3+14a^2+6a+12\)
\(=a\left(4a^2+14a+6\right)+12\)
\(=a\left[\left(4a^2+2a\right)+\left(12a+6\right)\right]+12\)
\(=a\left[2a\left(2a+1\right)+6\left(2a+1\right)\right]+12\)
\(=a\left(2a+1\right)\left(2a+6\right)+12\)
Vì \(4a^3+14a^2+6a+12\) chia hết cho 2a+1
\(=>a\left(2a+1\right)\left(2a+6\right)+12\) chia hết cho 2a+1
Mà a(2a+1)(2a+6) chia hết cho 2a+1
=> 12 chia hết cho 2a+1
=> \(2a+1\inƯ_{12}\)
Mặt khác 2a+1 lẻ
=> \(2a+1\in\left\{1;3;-1;-3\right\}\)
=> \(a\in\left\{0;1;-1;-2\right\}\)
Vậy \(a\in\left\{0;1;-1;-2\right\}\)
1) a2(a+1)+2a(a+1)
=(a+1)(a2+2a)
=(a+1)(a2+2a+1-1)
=(a+1)[(a+1)2-12]
=(a+1)(a+1-1)(a+1+1)
=a(a+1)(a+2)
Trong 3 số nguyên liên tiếp luôn có một số chia hết cho 2, một số chia hết cho 3.
=> a(a+1)(a+2)\(⋮\)2.3=6
=> a2(a+1)+2a(a+1)\(⋮\)6 (a thuộc Z)
câu 1 bạn phân tích ra là a(a+1)(a+2)(a+3) là 4 số tự nhiên liên tiếp nên chia hết cho 24.
câu 2 bạn phân tích ra thành (a-2)(a-1)a(a+1)(a+2) là 5 số tự nhiên liên tiếp nên chia hết cho 120
bài 3 phân tích ra thành:(a-2)(a-1)a(3a-5) nhưng mình k biết nó chia hết cho 24 ở chỗ nào
\(1,\left(2n-3\right)^2-9=\left(2n-3-3\right)\left(2n-3+3\right)=\left(2n-6\right)2n=4n\left(n-3\right)⋮4\)
\(2,=a^3\left(a-2\right)-a\left(a-2\right)=\left(a-2\right)\left(a^3-a\right)=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\)
Vì đây là tích 4 số nguyên lt nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
Ta có: a3+6a2-2=a3-a2+7a2-7+5 = a2(a-1)+7(a2-1)+5 = a2(a-1)+7(a-1)(a+1)+5=(a-1)(a2+7a+7)+5
Ta nhận thấy (a-1)(a2+7a+7) chia hết cho a-1 với mọi a
=> để biểu thức chia hết (a-1) thì 5 phải chia hết cho a-1
=> a-1 = {-5, -1, 1, 5}
=> a={-4; 0; 2; 6}
Đáp số: a={-4; 0; 2; 6}
(x25-x22)+(x22-x19)+(x19-x16)...+(x4-x) chia hết cho x2+x+1
hay x25-x chia hết cho x2+x+1
mà x2+x+1 chia hết cho x2+x+1
=> x25+x2+1 chia hết cho x2+x+1
2.a2(a2-a+2) là cp
Vì a2 là cp để a2(a2-a+2) là cp <=> a2-a+2 cũng là cp <=> 4(a2-a+2) là cp
Đặt 4(a2-a+2)=k2 (k tự nhiên)
<=> (2a-1)2+7=k
<=>7=(k-2a+1)(k+2a-1)=7.1=1.7=-1.(-7)=-7.(-1)
Kẻ bảng tự tìm nốt giá trị của a nhé
Ta có đa thức đầu = (2a+1)(2a2 +6a) +12
Để đa thức đầu chia hết cho đa thức sau thì 2a+1 phải là ước lẻ của 12 hay 2a+1=+-1;+-3
Thế vào giải tiếp