Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}\left(3x-33\right)^{2008}\ge0\\\left|y-7\right|^{2009}\ge0\end{matrix}\right.\Rightarrow\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\ge0\)
Mà \(\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-33\right)^{2008}=0\\\left|y-7\right|^{2009}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-33=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=7\end{matrix}\right.\)
Vậy \(x=11;y=7\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
a)
\(2009-\left|x-2009\right|=x\)
\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)
\(\Rightarrow x-2009\le0\)
\(\Rightarrow x\le2009\)
Vậy \(x\le2009\)
b)
Vì \(\left(2x+1\right)^{2008}\ge0\forall x\)
\(\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)
Mà theo đề bài :
\(\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
\(\Rightarrow\left(2x+1\right)^{2008}=0;\left(y-\dfrac{2}{5}\right)^{2008}=0;\left|x+y-z\right|=0\)
*) Với \(\left(2x+1\right)^{2008}=0\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\dfrac{-1}{2}\)
*) Với \(\left(y-\dfrac{2}{5}\right)^{2008}=0\)
\(\Rightarrow y-\dfrac{2}{5}=0\)
\(\Rightarrow y=\dfrac{2}{5}\)
*) Với \(\left|x+y-z\right|=0\)
\(\Rightarrow x+y-z=0\)
\(\Rightarrow\dfrac{-1}{2}+\dfrac{2}{5}-z=0\)
\(\Rightarrow\dfrac{-1}{10}-z=0\)
\(\Rightarrow z=\dfrac{-1}{10}\)
Vậy \(x=\dfrac{-1}{2};y=\dfrac{2}{5};z=\dfrac{-1}{10}\)
a, 2009 - \(\left|x-2009\right|\) = x
=> \(\left|x-2009\right|\) = 2009 - x
=> \(\left[{}\begin{matrix}x-2009=2009-x\\x-2009=-2009-x\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=4018\\2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2009\\x=0\end{matrix}\right.\)
Vậy x \(\in\)n { 2009 ; 0 }
Sửa đề \(\left(3x-\frac{1}{5}\right)^{2014}+\left(\frac{2}{5}y+\frac{4}{7}\right)^{2012}\)
Do VT ko âm
\(\Rightarrow\hept{\begin{cases}3x=\frac{1}{5}\\\frac{2}{5}y=-\frac{4}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{5}.\frac{1}{3}=\frac{1}{15}\\y=-\frac{4}{7}.\frac{5}{2}=\frac{-10}{7}\end{cases}}\)
\(\left(\frac{2}{5}y+\frac{4}{7}\right)^{2016}\) nhé mình thiếu dấu
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
để được tổng =0 thì x + 2006/2007 = 0 và 2008/2009 - y =0
vậy suy ra x + 2006/2007 = 0 ; x = -2006/2007
suy ra 2008/2009 - y = 0 ; y = 2008/2009
Vì \(\left|x+\frac{2006}{2007}\right|\ge0;\left|\frac{2008}{2009}-y\right|\ge0\)
Mà \(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)
=> \(\hept{\begin{cases}\left|x+\frac{2006}{2007}\right|=0\\\left|\frac{2008}{2009}-y\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{2006}{2007}=0\\\frac{2008}{2009}-y=0\end{cases}}\)=> \(\hept{\begin{cases}x=-\frac{2006}{2007}\\y=\frac{2008}{2009}\end{cases}}\)
Vì giá trị tuyệt đối của từng cái đó luôn lớn hơn hoặc bằng không nên biểu thức đó bằng không khi:
\(\left|x+\frac{13}{7}\right|=0\Rightarrow x+\frac{13}{7}=0\Rightarrow x=\frac{-13}{7}\)
\(\left|y+\frac{2009}{2008}\right|=0\Rightarrow y+\frac{2009}{2008}=0\Rightarrow y=\frac{-2009}{2008}\)
\(\left|z+2007\right|=0\Rightarrow z+2007=0\Rightarrow z=-2007\)
Vậy ....
Ta có: /x-2009/2009\(\ge\)0; (y-2010)2010=[(y-2010)1005]2 \(\ge\)0 và 2011/z-2011/\(\ge\)0
Tổng 3 số dương 0 khi và chỉ khi 3 số đó đều=0, khi đó dấu bằng xảy ra.
=> \(\hept{\begin{cases}Ix-2009I^{2009}=0\\\left(y-2010\right)^{2010}=0\\2011Iz-2011I=0\end{cases}}\)
=> x=2009; y=2010; z=2011
TK MÌNH ĐI MOIH NGƯỜI MÌNH BỊ ÂM NÈ!
AI TK MÌNH MÌNH TK LẠI CHO!
vì (3x-33)^2008 >hoặc =0
|y-7|^2009> hoac =0
=>(3x-33)^2008=0 ; |y-7|^2009=0
=>3x-33=0=>x=33/3=11
y-7=0=>y=7