K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình chỉ biết làm ý a thôi :)

S = 21 + 22 + 23 + ... + 299 + 2100

S = ( 21 + 22 ) + ... + ( 299 + 2100 )

S = 21( 1 + 2 ) + ... + 299 ( 1 + 2 )

S = 21 . 3 + ... + 299 . 3

S = 3( 21 + ... + 299 ) chia hết cho 3

13 tháng 12 2021

học dốt thế lớp 1 còn giải dc

24 tháng 9 2023

thế bạn ánh giải đi xem nào lớp 1 đã học mũ đâu nhể!

15 tháng 12 2021

\(A=2^0+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=1+2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(A=1+3\left(2+2^3+2^5+...+2^{99}\right)\)

A chia 3 dư 1

23 tháng 11 2017

Tổng  = 2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^98+2^99+2^100)

         = 2+2.(2+2^2+2^3)+2^4.(2+2^2+2^3)+....+2^97.(2+2^2+2^3)

         = 2+2.14+2^4.14+....+2^97.14

         = 2+14.(2+2^4+...+2^97)

Vì 14 chia hết cho 7 =. 14(2+2^4+...+2^97) chia hết cho 7

Mà 2 chia 7 dư 2

=> tổng trên chia 7 dư 2

k mk nha

23 tháng 11 2017

Nhóm 3 số hạng liền nhau:

(21 + 22 + 23) + ... + (297 + 298 + 299) + 2100 

= 2(1 + 2 + 22) + ... + 297 (1 + 2 + 22) + 2100

= 2.7 + ... + 297 . 7 + 2100

Vậy: Số dư của tổng trên chia cho 7 bằng số dư của 2100 chia 7.

Ta có: 23 = 8 chia hết cho 7 dư 1.

=> 299 = (23)3chia cho 7 dư 1.

=> 2100 = 2.299 chia cho 7 dư 2.

Vậy: Tổng đã chia cho 7 dư 2.

20 tháng 9 2017

a, S = 1 + 21+2+3+...+99= 1 + 24950

Vì 4950 chia hết cho 9 mà 1 chia 9 dư 1 => S chia 9 dư 1.

b,

    S + 1 = 1 + 1 + 24950= 24951

Vì 2 = 2 => n-1 = 4951

n= 4951 + 1

n= 4952.

                                                        Đáp số : a, 1.

                                                                     b, 4952.

20 tháng 9 2017

mình để a là 7 mà

sao bạn là 9

23 tháng 11 2014

ta nhan thay 2 mu 1 +2 mu 2 +2 mu3 +2 mu 4 se chia het cho 7

va cu 4 so cu lien tiep cung nhau deu chia het cho 7

so so hang mu la : 100 - 1 chia 1 + 1 = 100

ma 100 chia het cho 4

suy ra 2 mu 1 + 2 mu 2 +2 mu 3 +....+2mu 98 +2mu 99 +2 mu 100 chia cho 7 co so du bang 0

13 tháng 3 2016

số dư là 2

10 tháng 11 2015

A=(2^1+2^2)+(2^3+2^4)+.....+(2^99+2^100)

A=(2+2^2)+2^2(2+2^2)+.....+2^98(2+2^2)

A=6+2^2.6+....+2^98.6

A=6+2^2.6+......+2^98.3.2

Vậy A chia hêt cho 3