K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2015

bài này ta làm như sau " chủ yếu là bấm máy thôi"

2006 đồng dư với 26 (mod 33)

200612        đồng dư với 2612 (mod 33)

262 đòng dư với 16(mod 33)

=> (262)6 đồng dư với 166 (mod 33) mà 166 đồng dư với 16 (mod 33) 

vậy số dư của phép chia 200612 cho 33

21 tháng 1 2016

làm sao ra 2 vậy bạn

 

22 tháng 1 2016

cái bài này = 6 hay 4 v

 

18 tháng 10 2017

Ta có :

\(5^{70}=\left(5^2\right)^{35}=25^{35}=\left(12.2+1\right)^{35}\equiv1\left(mod12\right)\)

\(7^{70}=\left(7^2\right)^{35}=49^{35}=\left(12.4+1\right)^{35}\equiv1\left(mod12\right)\)

\(\Rightarrow5^{70}+7^{50}\equiv2\left(mod12\right)\) hay \(5^{70}+7^{50}\) chia 12 dư 2

12 tháng 1 2017
làm sao bn
29 tháng 12 2016

HD

Ghép tạo thừa số (x+1) 

làm đi không làm dduocj mình mới làm chi tiết

29 tháng 12 2016

thay x=-1. ra số dư, áp dụng định lý bê du

15 tháng 10 2022

 

a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)

\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)

\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)

b: \(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6

b: Để đa thức dư bằng 0 thì 17m^2+81m-20=0

=>m=-5 hoặc m=4/17

19 tháng 3 2020

Ta có: \(A=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+2028\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+2028\)

Đặt: \(x^2+8x+12=t\) ta có: \(x^2+8x+7=t-5\) và \(x^2+8x+15=t+3\)

Ta có: \(A=\left(t+3\right)\left(t-5\right)+2028=t^2-2t+2013\)chia t dư 2013

Vậy A chia x2 + 8x + 12 dư 2013