Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(A=1+7\cdot2+7\cdot2^4+...+7\cdot2^{2014}\)
\(A=1+7\cdot\left(2+2^4+...+2^{2014}\right)\) chia 7 dư 1
A =1+ (2+22+23) + ( 24+25+26 ) + .....+ ( 22008 +22009+22010) = 1+ 7 .( 2+24 + 27 +.....+ 22008)
=> A chia 7 dư 1
ta co :
A=20+21+22+...22009+22010
=>A=(20+21+22)+...+(22008+22009+22010)
=>A=(2^0+2^1+2^2)+...+2^2008.(2^0+2^1+2^2)
=>A=(1+...+2^2008).7 chia het cho 7
=>A chia het cho 7
=>A chia het cho 7 du 0
**** nhe
2) M = 1 + (2 + 22) + ....... + (22009 + 22010)
= 1 + (2.1 + 2.2) +..... + (22009.1 + 22009.2)
= 1 + 2(1+2) + ..... + 22009(1+2)
= 1 + 3.(2 + 23 + ... + 22009)
Vậy M chia 3 dư 1
3) C = 2 + (22 + 23) + ..... + (216 + 217)
= 2 + 22.3 + ....... + 216.3
= 3.(22 + 24 + ....... + 216) + 2
Vậy C không chia hết cho 3
A+1=(1+21+22+23)+(24+25+26+27)+...+(297+298+299+2100)
A+1= 1.15+24.15+...+297.15
A+1=15.(1+24+...+297)
A+1 chia hết cho 15
=> A chia cho 15 dư 14
k mình nha