K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

a)\(\frac{x-8}{2x-17}\)

Gọi d thuộc ƯC(x-8,2x-17)

=>x-8 chia hết cho d=>2(x-8) chia hết cho d=>2x-16 chia hết cho d

=>2x-17 chia hết cho d

=>(2x-16)-(2x-17) chia hết cho d

=>2x-16-2x+17 chia hết cho d

=>1 chia hết cho d

=> d thuộc Ư(1)=\([1;1]\)

=>Phân số trên tối giản vs mọi giá trị của x

Học tốt

a: \(A=\dfrac{5}{4}\cdot\dfrac{11}{3}\cdot\dfrac{-1}{11}=\dfrac{-5}{12}=\dfrac{-25}{60}=\dfrac{-50}{120}\)

b: \(B=\dfrac{3}{4}\cdot\dfrac{1}{12}\cdot\dfrac{2}{3}=\dfrac{1}{24}=\dfrac{5}{120}\)

c: \(C=\dfrac{5}{4}\cdot\dfrac{1}{15}\cdot\dfrac{2}{5}=\dfrac{2}{60}=\dfrac{1}{30}=\dfrac{4}{120}\)

\(D=-3\cdot\dfrac{-7}{12}\cdot\dfrac{1}{-7}=-\dfrac{1}{4}=\dfrac{-30}{120}\)

Vì -50<-30<4<5

nên A<D<B<C

a: \(A=\dfrac{5}{4}\cdot\dfrac{11}{3}\cdot\dfrac{-1}{11}=\dfrac{-5}{12}=\dfrac{-25}{60}=\dfrac{-50}{120}\)

b: \(B=\dfrac{3}{4}\cdot\dfrac{1}{12}\cdot\dfrac{2}{3}=\dfrac{1}{24}=\dfrac{5}{120}\)

c: \(C=\dfrac{5}{4}\cdot\dfrac{1}{15}\cdot\dfrac{2}{5}=\dfrac{2}{60}=\dfrac{1}{30}=\dfrac{4}{120}\)

\(D=-3\cdot\dfrac{-7}{12}\cdot\dfrac{1}{-7}=-\dfrac{1}{4}=\dfrac{-30}{120}\)

Vì -50<-30<4<5

nên A<D<B<C

\(x\in Z\)\(\Rightarrow x+1\ne0\Rightarrow x\ne-1\)

Gọi d=(x-4,x+1)

\(\Rightarrow\hept{\begin{cases}x-4⋮d\\x+1⋮d\end{cases}}\)

\(\Rightarrow x+1-\left(x-4\right)⋮d\)\(\Rightarrow5⋮d\)

Giả sử d=5

=> \(x=5k+4\left(k\in Z\right)\)

mà \(\frac{x-4}{x+1}\)là phân số tối giản nên d=1

=>\(x\ne5k+4\)

13 tháng 10 2018

a) 5x.(x+3/4) = 0

=> x = 0

x+3/4 = 0 => x = -3/4

b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)

\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)

\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)

\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)

\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)

\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

=> x + 2017 = 0

x = -2017

13 tháng 10 2018

a) để 2x - 3 > 0

=> 2x > 3

x > 3/2

b) 13-5x < 0

=> 5x < 13

x < 13/5

c) \(\frac{x+3}{2x-1}>0\)

=> x + 3 > 0

x > -3

d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)

Để x+7/x+3 < 1

=> 1 + 4/x+3 < 1

=> 4/x+3 < 0

=> không tìm được x thỏa mãn điều kiện

4 tháng 8 2016

a) Có: \(\left|x-2\right|\ge0\)

\(\left|x-10\right|\ge0\)

\(\Rightarrow\left|x-2\right|+\left|x-10\right|+4\ge4\)

Xét \(\orbr{\begin{cases}x-2=0\Rightarrow x=2\Rightarrow A=0+8+4=12\\x-10=0\Rightarrow x=10\Rightarrow A=8+0+4=12\end{cases}}\)

Vậy \(Min_A=12\) tại \(x=2\) hoặc \(10\)

4 tháng 8 2016

b) Có: \(\left|x-1\right|\ge0\)

\(\left|x-2\right|\ge0\)

\(\left|x-3\right|\ge0\)

\(\Rightarrow B\ge0\)

Xét: \(\hept{\begin{cases}x-1=0\Rightarrow x=1\Rightarrow B=0+1+2=3\\x-2=0\Rightarrow x=2\Rightarrow B=1+0+1=2\\x-3=0\Rightarrow x=3\Rightarrow B=2+1+0=3\end{cases}}\)

Vậy \(Min_B=2\) tại \(x=2\)

27 tháng 6 2019

Để phân số đó tối giản ta cần chứng minh tử và mẫu là 2 số nguyên tố cùng nhau

Đặt ( x-8; 2x-17)=d (d khác 0)

x-8 chia hết cho d

2(x-8) chia hết cho d hay 2x-16 chia hết cho d

Mặt khác 2x-17 chia hết cho d=> (2x-16)(2x-17) chia hết cho d

                                               <=> 1 chia hết cho d => d=1

=> x-8 và 2x-17 là 2 số nguyên tố cùng nhau

=> Phân số đó tối giản với mọi giá trị của x