K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

c) { x +2y +3z =20 
{3x+5y +4z =37 

{ -3x - 6y - 9z = -60 
{ 3x + 5y + 4z = 37 
Cộng lại : -y - 5z = -23 
<=> y + 5z = 23 
<=> y = 23 - 5z 

{ x +2y +3z =20 
{3x+5y +4z =37 

{ -5x - 10y - 15z = -100 
{ 6x + 10y + 8z = 74 
Cộng 
=> -x - 7z = -26 
<=> x = 26 - 7z 
<=> (26 - x)/7 = z 

=> y = 23 - 5( 26 - x )/7 

Thế : Ta tính được : 
x = 7n + 2 
y = 3 - 5n 
z = n + 4 

Vậy 3 - 5n ≥ 0 
<=> -5n ≥ -3 
<=> n ≤ 3/5 

(3 - y)/5 = n 
Vì z = n + 4 nguyên dương thì n nguyên luôn thì (3 - y)/5 chia hết 
Bắt đầu y = 3 là số nguyên nhỏ nhất 
y = 3 => n = 0 => z = 4 và x = 2 
y = 8 => n = -1 => z = 3 và x = -5 ( loại do x là nguyên âm) 

Như vậy cặp số nguyên nhỏ nhất (x ; y ; z) = (2 ; 3 ; 4)

6 tháng 1 2016

 a/ 
x= (25y + 1)/16 = y + (9y+1)/16 

Gọi k nguyên nhỏ nhất k = (9y+1)/16 

y= (16k-1)/9 = (18k-2k -1)/9 = 2k - (2k+1)/9 

Ta thấy k=4 thỏa 
=> y =7 => x=11 

b/ 41x-37y=187 
x= (187 + 37y)/41 = [(164 + 41y) + 23 -4y]/41 = 4 + y + (23-4y)/41 

Gọi k nguyên nhỏ nhất k=(23-4y)/41 
=> y = (23- 41k)/4 = (24 -40k -1-k)/4 = 6 -10k -(1+k)/4 
=> (1+ k)/4 nguyên 
=> k=-1 
=> y=16 
=> x=19

https://olm.vn/hoi-dap/detail/28591495780.html

Tham khảo ở đây

Mình gửi cho

Học tốt!!!!!!!!!!!!!

3 tháng 8 2019

\(25\equiv9\left(mod16\right)\)=> 9y+1 chia hết cho 16 => 9y chia 16 dư 15 => y chia 16 dư 7 => y nhỏ nhất =7 => x nhỏ nhất = 11

11 tháng 9 2020

a.  \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)

<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)

<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)

Đặt: x + y = u; xy = v => u; v là số nguyên

Ta có: uv - \(u^2+2v=1\)

<=> \(u^2-uv-2v+1=0\) 

<=> \(u^2+1=v\left(2+u\right)\)

=> \(u^2+1⋮2+u\)

=> \(u^2-4+5⋮2+u\)

=> \(5⋮2-u\)

=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1 

Mỗi trường hợp sẽ tìm đc v 

=> x; y