Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co :(x+y)^2=(x-1)(y-1)
X^2+2xy+y^2=xy-x-y+1
2x^2+2xy+2y^2+x+y-2=0
(x^2+2xy+y^2)+(x^2+2x+1)+(y^2+2y+1)=4
(x+y)^2+(x+1)^2+(y+1)^2=4
Do x;y€Z nen (x+y)^2;(x+1)^2;(y+1)^2 la cac so chinh phuong
Suy ra co 3 truong hop
°(x+y)^2=0;(x+1)^2=0;(y+1)^2=4
°(x+y)^2=0;(x+1)^2=4;(y+1)^2=0
°(x+y)^2=4;(x+1)^2=0;(y+1)^2=0
Sau do tu giai ra tim x;y
\(PT\Leftrightarrow xy\left(x+y-1\right)+\left(x+y-1\right)=1\)
\(\Leftrightarrow\left(x+y-1\right)\left(xy+1\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}x+y-1=1\\xy+1=1\end{cases}hoac\hept{\begin{cases}x+y-1=-1\\xy+1=-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=2\\xy=0\end{cases}hoac\hept{\begin{cases}x+y=0\\xy=-2\end{cases}}}\)
Đến đây thì đơn giản rồi nhé :)))
Phương trình tương đương: \(\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)
\(\Leftrightarrow x+y=\frac{xu+2}{x^2y^2+1}\)
\(\Rightarrow\left(xy+2\right)⋮\left(x^2y^2+1\right)\Rightarrow\left(x^2y^2-4\right)⋮\left(x^2y^2+1\right)\)
\(\Rightarrow\left(x^2y^2+1-5\right)⋮\left(x^2y^2+1\right)\Rightarrow5⋮\left(x^2y^2+1\right)\)
\(\Rightarrow x^2y^2+1\in\left\{1;5\right\}\Rightarrow x^2y^2\in\left\{0;4\right\}\Rightarrow xy\in\left\{-2;0;2\right\}\)
- \(xy=0\Rightarrow xy=2\Rightarrow\left(x;y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
- \(xy-2\Rightarrow x+y=0\Rightarrow y=-x\Rightarrow x^2=2\left(ktm\right)\)
- \(xy=2\Rightarrow x+y=\frac{4}{5}\left(ktm\right)\)
Vậy: \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
x2+2y2+2xy-y=3(y-1)
<=> x2+2xy+y2+y2-y=3(y-1)
<=> (x+y)2=3(y-1)-y(y-1)
<=> (x+y)2=(y-1)(3-y)
Nhận thấy, Vế trái (x+y)2 \(\ge\)0 Với mọi x,y
=> Để phương trình có nghiệm thì Vế phải \(\ge\)0
<=> (y-1)(3-y)\(\ge\)0 <=> 1\(\le\)y\(\le\)3
Y nguyên => y1=1; y2=2; y3=3
+/ y=1 => x=-y=-1
+/ y=2 => x=-1
+/ y=3 => x=-y=-3
Các cặp (x,y) nguyên là: (-1,1); (-1; 2); (-3,3)
\(\left(x+y\right)^2+3x+y+1=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2>\left(x+y\right)^2\)
\(\left(x+y\right)^2+3x+y+1=\left(x+y+2\right)^2-x-3y-3=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2< \left(x+y+2\right)^2\)
Vậy \(z^2\)là số chính phương ở giữa 2 số chính phương khác là \(\left(x+y\right)^2\)và \(\left(x+y+2\right)^2\)
\(\Rightarrow z^2=\left(x+y+1\right)^2\Leftrightarrow\orbr{\begin{cases}x+y=1-z\left(1\right)\\x+y=z-1\left(2\right)\end{cases}}\)
Xét (1): \(x+y=1-z>0\Rightarrow z< 1\Leftrightarrow z=0\)Vì 0 không là số nguyên dương nên (1) vô nghiệm.
Xét (2): \(x+y=z-1\)lúc này pt có vô số nghiệm nguyên dương (x;y;z), x>0, y>0, z>1
đenta rồi cho đenta chính phương
đenta là gì vậy bạn? Bạn có thể giải cụ thể giúp mình được ko