K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2020

\(\Leftrightarrow2x^2-xy+x-y^2+8y-22=0\)

\(\Leftrightarrow-y^2+\left(8-x\right)y+2x^2+x-22=0\left(1\right)\)

Coi pt bậc 2 theo ẩn y , tham số là x , để(1) có nghiệm nguyên thì \(\Delta\ge0\) và là một chính phương với x nguyên 

\(\Delta=\left(8-x\right)^2+4\left(2x^2+x-22\right)=9x^2-12x-24=\left(3x-4\right)^2-8\)

Đặt \(\Delta=k^2\) với \(k\in Z\) 

\(\Rightarrow\left(3x-4\right)^2-8=k^2\Leftrightarrow\left(3x-4\right)^2-k^2=8\)

\(\Leftrightarrow\left(3x-4-k\right)\left(3x-4+k\right)=8=\left(-1\right).\left(-8\right)=\left(-2\right).\left(-4\right)=2.4=1.8\)(2)

Từ( 2) lần lượt thay các cặp ước của 8 vào ta tìm được x nguyên và sau đó thay x vào (1) ta sẽ tìm được y nguyên tương ứng 

Chúc bạn học tốt !!!

8 tháng 11 2016

Ta có

\(1\left(x+1\right)\left(x+2\right)\left(x+8\right)\left(x+9\right)=y^2\)

\(\Leftrightarrow1\left(x^2+10x+9\right)\left(x^2+10x+16\right)=y^2\)

Đặt x2 + 10x + 16 = a thì pt thành

a(a + 7) = y2

<=> 4a2 + 28a = 4y2

<=> (4a2 + 28a + 49) - 4y2 = 49

<=> (2a + 7)2 - 4y2 = 49

<=> (2a + 7 - 2y)(2a + 7 + 2y) = 49

<=> (2a + 7 - 2y, 2a + 7 + 2y) = (1, 49; 49, 1; 7, 7; - 1,- 49; - 49, - 1; - 7, - 7)

Thế vào rồi giải sẽ tìm được x,y

9 tháng 11 2016

thanks

NV
10 tháng 3 2019

\(\Leftrightarrow2x^2-xy+x-y^2+8y-22=0\)

\(\Leftrightarrow-y^2+\left(8-x\right)y+2x^2+x-22=0\) (1)

Coi pt là bậc 2 theo ẩn \(y\) , tham số \(x\), để (1) có nghiệm nguyên thì \(\Delta\ge0\) và là một số chính phương với x nguyên

\(\Delta=\left(8-x\right)^2+4\left(2x^2+x-22\right)=9x^2-12x-24=\left(3x-4\right)^2-8\)

Đặt \(\Delta=k^2\) với \(k\in Z\)

\(\Rightarrow\left(3x-4\right)^2-8=k^2\Leftrightarrow\left(3x-4\right)^2-k^2=8\)

\(\Leftrightarrow\left(3x-4-k\right)\left(3x-4+k\right)=8=\left(-1\right).\left(-8\right)=\left(-2\right)\left(-4\right)=2.4=1.8\) (2)

Từ (2), lần lượt thay các cặp ước của 8 vào ta tìm được \(x\) nguyên và sau đó thay \(x\) vào (1) ta sẽ tìm được \(y\) nguyên tương ứng

30 tháng 5 2017

Tìm nghiệm nguyên dương của phương trình: x^2+(x+y)^2=(x+9)^2 - Đại số - Diễn đàn Toán học

2 tháng 6 2017

\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)

\(\Leftrightarrow y\left[2y^2+\left(x^2-3x\right)y+3x^2+x\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\2y^2+\left(x^2-3x\right)y+3x^2+x=0\end{cases}}\)

Với \(y=0\)thì x nguyên tùy ý.

Với \(2y^2+\left(x^2-3x\right)y+3x^2+x=0\)

Ta có: \(\Delta=\left(x^2-3x\right)^2-4.2.\left(3x^2+x\right)=\left(x-8\right)x\left(x+1\right)^2\)

Với \(x=-1\) thì \(\Rightarrow y=-1\)

Với \(x\ne-1\) để y nguyên thì \(\Delta\) phải là số chính phương hay

\(\left(x-8\right)x=k^2\)

\(\Leftrightarrow\left(x^2-8x+16\right)-k^2=16\)

\(\Leftrightarrow\left(x-4+k\right)\left(x-4-k\right)=16\)

Tới đây thì đơn giản rồi b làm tiếp nhé.

2 tháng 6 2017

( x+ y) ( x + y2) = ( x - y )3