K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

Câu a)

\(x^2-xy=6x-5y-8\Leftrightarrow x^2-xy-6x+5y+8=0\Leftrightarrow\left(x-5\right)\left(x-y-1\right)=-3\)

Đến đây bạn tự giải tiếp và tìm nghiệm nha!

Câu c)

\(7x^2=2013-12y^2\Rightarrow7x^2< 2013\Leftrightarrow x\le16\)

Đến đây ta nhận xét rằng vế trái lẻ và chia  hết cho 3. Vậy bạn chỉ cần thử 3 giá trị của x là 3, 9, 15
Hiện tại mình đang bận nên chưa tiện giải hết.
Khi nào mình giải tiếp nha!

a: \(A=x^2+3x+\dfrac{9}{4}+y^2-6y+9+1993.75\)

\(=\left(x+\dfrac{3}{2}\right)^2+\left(y-3\right)^2+1993.75>=1993.75\)

Dấu '=' xảy ra khi x=-3/2 và y=3

b: \(=3\left(x^2+\dfrac{7}{3}x+3\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{59}{36}\right)\)

\(=3\left(x+\dfrac{7}{6}\right)^2+\dfrac{59}{12}>=\dfrac{59}{12}\)

Dấu '=' xảy ra khi x=-7/6

c: \(=4\left(x^2-\dfrac{15}{4}x+5\right)\)

\(=4\left(x^2-2\cdot x\cdot\dfrac{15}{8}+\dfrac{225}{64}+\dfrac{95}{64}\right)\)

\(=4\left(x-\dfrac{15}{8}\right)^2+\dfrac{95}{16}>=\dfrac{95}{16}\)

Dấu '=' xảy ra khi x=15/8

3 tháng 12 2017

a) \(\dfrac{3x-2}{2xy}+\dfrac{7x+2}{2xy}\)

\(=\dfrac{\left(3x-2\right)+\left(7x+2\right)}{2xy}\)

\(=\dfrac{3x-2+7x+2}{2xy}\)

\(=\dfrac{10x}{2xy}\)

\(=\dfrac{5}{y}\)

b) \(\dfrac{5x+y^2}{x^2y}+\dfrac{x^2-5y}{xy^2}\) MTC: \(x^2y^2\)

\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}+\dfrac{x\left(x^2-5y\right)}{x^2y^2}\)

\(=\dfrac{y\left(5x+y^2\right)+x\left(x^2-5y\right)}{x^2y^2}\)

\(=\dfrac{5xy+y^3+x^3-5xy}{x^2y^2}\)

\(=\dfrac{y^3+x^3}{x^2y^2}\)

c) \(\dfrac{3x-2}{2xy}-\dfrac{7x-y}{2xy}\)

\(=\dfrac{\left(3x-2\right)-\left(7x-y\right)}{2xy}\)

\(=\dfrac{3x-2-7x+y}{2xy}\)

\(=\dfrac{-2-4x+y}{2xy}\)

d) \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\) MTC: \(x^2y^2\)

\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}-\dfrac{x\left(5y-x^2\right)}{x^2y^2}\)

\(=\dfrac{y\left(5x+y^2\right)-x\left(5y-x^2\right)}{x^2y^2}\)

\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}\)

\(=\dfrac{y^3+x^3}{x^2y^2}\)

e) \(\dfrac{16xy}{3x-1}.\dfrac{3-9x}{12xy^3}\)

\(=\dfrac{16xy\left(3-9x\right)}{12xy^3\left(3x-1\right)}\)

\(=\dfrac{4\left(3-9x\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-4\left(9x-3\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-4.3\left(3x-1\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-12}{3y^2}\)

\(=\dfrac{-4}{y^2}\)

f) \(\dfrac{8xy}{3x-1}:\dfrac{12xy^3}{5-15x}\)

\(=\dfrac{8xy}{3x-1}.\dfrac{5-15x}{12xy^3}\)

\(=\dfrac{8xy\left(5-15x\right)}{12xy^3\left(3x-1\right)}\)

\(=\dfrac{2\left(5-15x\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-2\left(15x-5\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-2.5\left(3x-1\right)}{3y^2\left(3x-1\right)}\)

\(=\dfrac{-10}{3y^2}\)

5 tháng 12 2018

\(2x^2-4x=2x\left(x-2\right)\)

\(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)

\(10\left(x-y\right)-6x\left(y-x\right)=10\left(x-y\right)+6x\left(x-y\right)=\left(10+6x\right)\left(x-y\right)=2\left(x-y\right)\left(3x+5\right)\)\(\left(x+1\right)^2-25=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)

\(x^2+3x-y^2+3y=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)=\left(x+y\right)\left(x-y+3\right)\)

\(3x^2+5y-3xy-5x=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\)

\(x^2-7x-y^2+7y=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\)

\(3y^2-3z^2+3x^2=3\left(y^2-z^2+x^2\right)\)

5 tháng 12 2018

thanks

3 tháng 7 2017

a, \(\left(x^2-y^2\right)-\left(5x+5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

b, \(5x^3-5x^2y-10x^2+10xy\)

\(=5x^2\left(x-y\right)-10x\left(x-y\right)\)

\(=\left(5x-10x\right)\left(x-y\right)=5x\left(x-2\right)\left(x-y\right)\)

c, \(2x^2-5x=x\left(2x-5\right)\)

f, \(3x^2-7x-10=3x^2+3x^2-10x-10\)

\(=3x^2\left(x+1\right)-10\left(x+1\right)=\left(3x^2-10\right)\left(x+1\right)\)

d, \(x^3-3x^2+1-3x=x^3-3x^2-3x+1\)

\(=x^3+x^2-4x^2-4x+x+1\)

\(=x^2\left(x+1\right)-4x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x^2-4x+1\right)\left(x+1\right)\)

e, \(3x^2-6xy+3y^2-12z^2\)

\(=3\left(x^2-2xy+y^2-4z^2\right)\)

\(=3\left[\left(x-y\right)^2-4z^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

g, \(x^4+1-2x^2=\left(x^2-1\right)^2\)

h, \(3x^2-3y^2-12x+12y=3\left(x^2-y^2\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+3y-12\right)\)

\(=3\left(x-y\right)\left(x+y-4\right)\)

j, \(x^2-3x+2=x^2-2x-x+2=x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-1\right)\left(x-2\right)\)

3 tháng 7 2017

a. \(\left(x^2-y^2\right)-5\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

b. \(5x^3-5x^2y-10x^2+10xy\)

\(=5\left[\left(x^3-x^2y\right)-\left(2x^2-2xy\right)\right]\)

\(=5\left[x^2\left(x-y\right)-2x\left(x-y\right)\right]\)

\(=5x\left(x-y\right)\left(x-2\right)\)

c. \(2x^2-5x=x\left(2x-5\right)\)

d. \(x^3-3x^2+1-3x\)

\(=\left(x^3+1\right)-\left(3x^2+3x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left[x^2-x+1-3x\right]\)

\(=\left(x+1\right)\left[x^2-4x+1\right]\)

\(=\left(x+1\right)\left[x^2-2.x.2+2^2-2^2+1\right]\)

\(=\left(x+1\right)\left[\left(x-2\right)^2-3\right]\)

\(=\left(x+1\right)\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)\)

e. \(3x^2-6xy+3y^2-12z^2\)

\(=3\left[x^2-2xy+y^2-4z^2\right]\)

\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3\left(x-y+2z\right)\left(x-y-2z\right)\)

f. \(3x^2-7x-10\)

\(=3x^2-7x-7-3\)

\(=\left(3x^2-3\right)-\left(7x+7\right)\)

\(=3\left(x^2-1\right)-7\left(x+1\right)\)

\(=3\left(x+1\right)\left(x-1\right)-7\left(x+1\right)\)

\(=\left(x+1\right)\left[3\left(x-1\right)-7\right]\)

\(=\left(x+1\right)\left(3x-8\right)\)

g. \(x^4+1-2x^2=\left(x^2\right)^2-2.x^2+1=\left(x^2-1\right)^2\)

\(=\left(x+1\right)^2\left(x-1\right)^2\)

h. \(3x^2-3y^2-12x+12y\)

\(=3\left(x^2-y^2\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)

\(=\left(x-y\right)\left[3\left(x+y\right)-12\right]\)

\(=\left(x-y\right).3.\left(x+y-4\right)\)

j. \(x^2-3x+2=x^2-x-2x+2\)

\(=x\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(x-2\right)\)

P/s: ( Có j sai ns nha nhiều số quá tui rối đầu )

a: \(=\dfrac{x+3}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x\left(x+1\right)}\)

\(=\dfrac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x\left(x-1\right)}\)

b: \(=\dfrac{24y^5}{7x^2}\cdot\dfrac{-21x}{12y^3}=2y^2\cdot\dfrac{-3}{x}=\dfrac{-6y^2}{x}\)

c: \(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{x+1}{6\left(x-1\right)\left(x+1\right)}=\dfrac{-1}{2\left(x+1\right)}\)

d: \(=\dfrac{7x+2}{3\left(2x-y\right)}\cdot\dfrac{6x\left(2x-y\right)}{2\left(7x+2\right)}=x\)

25 tháng 9 2018

a) \(5x^2-10xy+5y^2-20z^2\)

\(=5\left(x^2-2xy+y^2-4z^2\right)\)

\(=5\left[\left(x^2-2xy+y^2\right)-\left(2z\right)^2\right]\)

\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

b) \(7x-6x^2-2\)

\(=-6x^2+7x-2\)

\(=-6x^2+4x+3x-2\)

\(=-2x\left(3x-2\right)+\left(3x-2\right)\)

\(=\left(3x-2\right)\left(-2x+1\right)\)

c) \(2x^2+3x-5\)

\(=2x^2-2x+5x-5\)

\(=2x\left(x-1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(2x+5\right)\)

d) \(16x-5x^2-3\)

\(=-5x^2+16x-3\)

\(=-5x^2+15x+x-3\)

\(=-5x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x-3\right)\left(-5x+1\right)\)