Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N\left(x\right)=x^2+2x+2020\)
\(\Delta=2^2-4.2020=4-8080=-8076< 0\)
Nên phương trình vô nghiệm
a) Ta có M(x) = 0
=> 2x - 6 = 0
=> x = 3
Vậy ngiệm của đa thức M(x) là 0
b) Ta có N(x) = x2 + 2x + 2000 = x2 + x + x + 1 + 1999 = (x2 + x) + (x + 1) + 1999 = x(x + 1) + (x + 1) + 1999 = (x + 1)(x + 1) + 1999
= (x + 1)2 + 1999 \(\ge\) 1999 > 0
=> Đa thức N(x) vô nghiệm
a, Ta có :
\(M=2x-6=0\Leftrightarrow2x=6\Leftrightarrow x=3\)
Vậy nghiệm của đa thức là 3
b, \(N=x^2+2x+2020=0\)
Câu này vô nghiệm thật ... con ko bt giải theo cách trên nên con ấn delta vào và ko thể hiện :v
Ta có : \(2^2-4.1.2020=4-8080=--8076< 0\)
Vậy phương trình vô nghiệm
M(x) = 2x - 6
M(x) = 0 <=> 2x - 6 = 0
<=> 2x = 6
<=> x = 3
Vậy nghiệm của đa thức là 3
N(x) = x2 + 2x + 2020
N(x) = x2 + 2x + 1 + 2019
= ( x + 1 )2 + 2019
Ta có \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2019\ge2019\)
=> N(x) vô nghiệm
a)\(M\left(x\right)=2x-6\)
ta có \(M\left(x\right)=0\)
hay\(2x-6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
vậy nghiệm của đa thức m(x) là 3
b) \(N\left(x\right)=x^2+2x+2020\)
ta có\(N\left(x\right)=0\)
hay\(x^2+2x+2020=0\)
\(\Leftrightarrow x^2+2x=-2020\)
\(\Leftrightarrow x.x+2x=-2020\)
\(\Leftrightarrow x\left(x+2\right)=-2020\)
còn lại tích của -2020 là bao nhiêu cậu thay vào
a)Ta có:\(2x^3+x^2-4x-2=0\)
\(\Leftrightarrow x^2\left(2x+1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-2=0\\2x+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=2\\x=-\frac{1}{2}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\sqrt{2};-\sqrt{2}\\x=-\frac{1}{2}\end{cases}}\)
b)Ta có:\(3x^2+2x-5=0\)
\(\Leftrightarrow3x^2-3x+5x-5=0\)
\(\Leftrightarrow3x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+5\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+5=0\\x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}\)
1) Ta có: 2x2 + 2x + 1 = 0
<=> x2 + (x2 + 2x + 1) = 0
<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0 (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)
x = x+ 1 => 0 = 1 Vô lý
Vậy đa thức đã cho ko có nghiệm
2) a) x3-2x2-5x+6 = 0
=> x3 - x2 - x2 + x - 6x + 6 = 0
=> ( x3 - x2) - (x2 - x) - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0
=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0
=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0
=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0
=> x = 1 hoặc x = -2 hoặc x = 3
Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3
b) x3 + 3x2 - 6x - 8 = 0
=> x3 + x2 + 2x2 + 2x - 8x - 8 = 0
=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0
=> (x+ 1). [x2 + 2x - 8] = 0
=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0
=> (x +1). (x -2). (x+4) = 0
=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0
=> x = -1 hoặc x = 2 hoặc x = -4
Đa thức đã cho có 3 nghiệm là -1; 2; -4
a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)
=6x3+3x2-4x+14
b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x
=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x
c/ P(x)=-6x=0
=> x=0 là nghiệm đa thức P(x)
d/ Ta có: x2+4x+5
=x.x+2x+2x+2.2+1
=x(x+2)+2(x+2)+1
=(x+2)(x+2)+1
=(x+2)2+1
Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)
=> Đa thức trên vô nghiệm.
1. Ta có :
f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0
f(x) = m - 1 - 3m + 2 = -2m + 1 = 0
\(\Rightarrow m=\frac{1}{2}\)
2.
a) M(x) = -2x2 + 5x = 0
\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)
b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0
N(x) = ( x + 2 ) . ( x - 1/2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014
vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm
a)Ta có \(M\left(x\right)=0\Leftrightarrow2x-4=0\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Vậy x = 2 là 1 nghiệm của đa thức M(x)
b)Ta có :\(N\left(x\right)=0\Leftrightarrow3x^2-\left|x\right|\)
Nếu x<0
\(\Rightarrow3x^2+x=0\)
\(\Rightarrow x\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}\)
Nếu x lớn hơn hoặc bằng 0
\(\Rightarrow3x^2-x=0\)
\(\Rightarrow x\left(3x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
Vậy 0 ; 1/3;-1/3 là 3 nghiệm của N(x)