K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

9 tháng 1 2017

ta có 

P = 2x^2 - 6x 

= 2( x^2 - 3x + 9/4) - 9/4

= 2( x-3/2)^2 - 9/4 

nhận xét 2(x-3/2)^2 >=0 

=> 2(x-3/2)^2 - 9/4 >=-9/4

dấu = xảy ra khi và chỉ khi 

x- 3/2 = 0 

=> x= 3/2

9 tháng 1 2017

4x - x^2 + 3 

= -x^2 + 4x - 4 +7

= -(x^2 - 4x + 4) + 7 

= -(x-2)^2 + 7 

nhận xét -(x-2)^2 <=0 

=> -(x-2)^2 + 7 <=7 

đấu = xảy ra khi và chỉ khi 

x-2 = 0 

=> x= 2

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

4 tháng 7 2016

B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)

\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)

4 tháng 7 2016

\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)

Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

16 tháng 9 2020

a) A = x2 + 12x + 39

= ( x2 + 12x + 36 ) + 3

= ( x + 6 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6

=> MinA = 3 ⇔ x = -6

B = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3

=> MinB = -4 ⇔ x = 2/3

b) C = 4x - x2 + 1

= -( x2 - 4x + 4 ) + 5

= -( x - 2 )2 + 5 ≤ 5 ∀ x

Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2

=> MaxC = 5 ⇔ x = 2

D = -4x2 + 4x - 3

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 ≤ -2 ∀ x

Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2

=> MaxD = -2 ⇔ x = 1/2

16 tháng 9 2020

Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3

Dấu "=" xảy ra <=> x + 6 = 0

=> x = -6

Vậy Min A = 3 <=> x = -6

Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4

Dấu "=" xảy ra <=> 3x - 2 =0

=> x = 2/3

Vậy Min B = -4 <=> x = 2/3

b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Max C = 5 <=> x = 2

Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2

Dấu "=" xảy ra <=> 2x - 1 = 0

=> x = 0,5

Vậy Max D = -2 <=> x = 0,5

15 tháng 12 2017

mk thấy bài 1 phải là ko phụ thuộc vào biến x chứ

15 tháng 12 2017

bài 2 

a= -30

20 tháng 7 2019

\(\text{a)}\left(2x-1\right)^2+x+2\)

\(=4x^2-4x+1+x+2\)

\(=4x^2-3x+3\)

\(=\left(4x^2-3x+\frac{9}{16}\right)+\frac{39}{16}\)

\(=\left(2x+\frac{3}{4}\right)^2+\frac{39}{16}\)

\(\text{Vì}\left(2x-\frac{3}{4}\right)^2\ge0\)

\(\text{nên }\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)

Vậy \(GTNN=\frac{39}{16}\),dấu bằng xảy ra khi \(x=\frac{3}{8}\)

\(\text{b)}4-x^2+2x\)

\(=\left(-x^2+2x-1\right)+5\)

\(=-\left(x^2-2x+1\right)+5\)

\(=-\left(x-1\right)^2+5\)

\(\text{Vì }-\left(x-1\right)^2\le0\)

\(\text{nên }-\left(x-1\right)^2+5\le5\)

Vậy \(GTLN=5\), dấu bằng xảy ra khi \(x=1\)

\(\text{c)}4x-x^2\)

\(=\left(-x^2+4x-4\right)+4\)

\(=-\left(x^2-4x+4\right)-4\)

\(=-\left(x-4\right)^2-4\)

\(\text{Vì }-\left(x-4\right)^2\le0\)

\(\text{nên }-\left(x-4\right)^2-4\le-4\)

Vậy \(GTLN=-4\), dấu  bằng xảy ra khi \(x=4\)

\(a,\left(2x-1\right)^2+\left(x+2\right)=4x^2-4x+1+x+2\)

\(=4x^2-3x+3\)

\(=4x^2-2.2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+3\)

\(=\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)

Dấu bằng xảy ra khi \(2x-\frac{3}{4}=0\Rightarrow x=\frac{3}{8}\)

Vậy \(x=\frac{3}{8}\)thì biểu thức đạt giá trị nhỏ nhất là \(\frac{39}{16}\)

\(b,4-x^2+2x=-\left(x^2-2x-4\right)\)

\(=-\left(\left(x-2\right)^2-8\right)\)

\(\left(x-2\right)^2-8\ge-8\)

\(-\left(\left(x-2\right)^2-8\right)\le8\)

Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy \(x=2\)thì biểu thức đạt giá trị lớn nhất là 8 

\(c,4x-x^2=-\left(x^2-4x\right)\)

\(=-\left(\left(x-2\right)^2-4\right)\)

\(\left(x-2\right)^2-4\ge-4\)

\(\Rightarrow-\left(\left(x-2\right)^2-4\right)\le4\)

Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của biểu thức là 4 khi x = 2