K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2

22 tháng 6 2015

1)P(x)=4x-x2+1=-(x2-4x+4)+5=-(x-2)2+5

Do (x-2)2>0

=>-(x-2)2<0

=>P(x)=-(x-2)2+5<5

=>Max P=5<=>(x-2)2=0<=>x=2

2)A(x)=x2-4x+y2-8y+6=(x2-4x+4)+(y2-8y+16)-14

=(x-2)2+(y-4)2-14

Do (x-2)2>0

(y-4)2>0

=>(x-2)2+(y-4)2>0

=>A(x)=(x-2)2+(y-4)2-14>-14

=>Min A=-14<=>(x-2)2=0 và (y-4)2=0<=>x=2 và y=4

22 tháng 6 2015

P(x) = 4x - x^2 + 1

         = - ( x^2 - 4x + 10) 

       =  -( x^2 - 2.x.2 + 4 + 6)

       = -(  x- 2 )^2 - 6 

Vậy GTLN của p là -6 tại x  - 2 = 0 => x = 2 

VẬy x = 2 thì .... 

B2)

 A(x) = x^2 - 4x + y^2 - 8y + 6 

     = x^2 - 2.x . 2 + 4 + y^2 - 2.y.4 + 16 - 14

     =( x - 2)^2 + (y - 4)^2 - 14 

VẬy GTNN của bt là -14 

              khi x - 2 = 0 => x = 2 

                    y - 4= 0 => y=4 

26 tháng 7 2017

1. Ta có \(\frac{x^3+4x^2+ax+b}{x^2+x-2}=\frac{x\left(x^2+x-2\right)+3\left(x^2+x-2\right)+\left(a-1\right)x+b+6}{x^2+x-2}=x+3+\frac{\left(a-1\right)x+b+6}{x^2+x-2}\)

Để đa thức \(x^3+4x^2+ax+b\)chia hết cho đa thức \(x^2+x-2\)

thì \(\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)

Vậy a=1;b=-6 thì ....

2. Ta có \(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\forall x\)

\(\Rightarrow M\ge-36\)

Vậy \(MinM=-36\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

7 tháng 12 2019

1) Có A = x3 + 4x2 + ax + b

             = x3 + x2 - 2x + 3x+ 3x - 6 - x + ax + b + 6

             = x(x2 + x - 2) + 3(x2 + x - 2) + (a - 1)x + (b + 6)

             = (x2 + x - 2)(x + 3) + (a - 1)x + (b + 6)

Do (x2 + x - 2)(x + 3) chia hết cho x2 + x - 2 nên để A chia hết cho x2 + x - 2

thì (a - 1)x + (b + 6) = 0 với mọi x

\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)

2) Có M = (x - 1)(x + 2)(x + 3)(x + 6)

              = [(x - 1)(x + 6)] [(x + 2)(x + 3)]

              = (x2 + 5x - 6)(x2 + 5x + 6)

              = (x2 + 5x)2 - 36

Thấy (x2 + 5x)2 ≥ 0 với mọi x

=> (x2 + 5x)2 - 36 ≥ -36 với mọi x

=> M ≥ -36 với mọi x

Dấu "=" xảy ra khi x2 + 5x = 0 

                    <=> x(x + 5) = 0

                    <=> x = 0 hoặc x + 5 = 0

                    <=> x = 0 hoặc x = -5

Vậy min M = -36, đạt đc khi x = 0 hoặc x = -5

P/s: ko chắc

1 tháng 12 2016

GTNN :

B=4x2+4x+11

= (2x)2+2*x*2+22+7

=(2x+2)2+7>= 7

dấu ''='' sảy ra khi 2x+2=0

                        => x = -1

vậy GTNN của biểu thức B là 7 tại x = -1

         

30 tháng 9 2018

\(B=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dau "=" xay ra  <=>  \(x=-\frac{1}{2}\)

Vay.....