K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

\(3n+2=3n-12+14=\left(-3\right)\left(4-n\right)+14\\ \left(-3\right)\left(4-n\right)⋮4-n\\ \text{Để }3n+2⋮4-n\Rightarrow14⋮4-n\Rightarrow4-n\inƯ\left(14\right)=\left\{-14;-7;-2;-1;1;2;7;14\right\}\)

$ 4 - n $ $ n $
$ - 14 $ $ 18 $
$ - 7 $ $ 11 $
$ - 2 $ $ 6 $
$ - 1 $ $ 5 $
$ 1 $ $ 3 $
$ 2 $ $ 2 $
$ 7 $ $ - 3 $
$ 14 $ $ - 10 $

Vậy \(n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)

\(n^2+n+2=n^2-1+n-1+4=\left(n+1\right)\left(n-1\right)+\left(n-1\right)+4=\left(n-1\right)\left(n+2\right)+4\\ \left(n-1\right)\left(n+2\right)⋮n-1\\ \text{Để }n^2+n+2⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

$ n - 1 $ $ n $
$ - 4 $ $ - 3 $
$ - 2 $ $ - 1 $
$ - 1 $ $ 0 $
$ 1 $ $ 2 $
$ 2 $ $ 3 $
$ 4 $ $ 5 $

Vậy \(n\in\left\{-3;-1;0;2;3;5\right\}\)

11 tháng 1 2018

Thank you hiha

Chương II : Số nguyên

14 tháng 1 2018

a) \(n+1\inƯ\left(n^2+2n-3\right)\)

\(\Leftrightarrow n^2+2n-3⋮n+1\)

\(\Leftrightarrow n\left(n+1\right)+n-3⋮n+1\)

\(n\left(n+1\right)⋮n+1\Rightarrow n-3⋮n+1\)

\(\Leftrightarrow n+1-4⋮n+1\)

\(n+1⋮n+1\Rightarrow-4⋮n+1\Rightarrow n+1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\) \(-2\) \(2\) \(-4\) \(4\)
\(n\) \(-2\) \(0\) \(-3\) \(1\) \(-5\) \(3\)

Vậy...

b) \(n^2+2\in B\left(n^2+1\right)\)

\(\Leftrightarrow n^2+2⋮n^2+1\)

\(\Leftrightarrow n^2+1+1⋮n^2+1\)

\(n^2+1⋮n^2+1\) nên \(1⋮n^2+1\Rightarrow n^2+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n^2+1\) \(-1\) \(1\)
\(n\) \(\sqrt{-2}\) (vô lý, vì 1 số ko âm mới có căn bậc hai)

\(0\) (tm)

Vậy \(n=0\)

c) \(2n+3\in B\left(n+1\right)\)

\(\Leftrightarrow2n+3⋮n+1\)

\(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow2\left(n+1\right)+1⋮n+1\)

\(2\left(n+1\right)⋮n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\)
\(n\) \(-2\) \(0\)

Vậy...

18 tháng 1 2018

a) n+1∈Ư(n2+2n−3)n+1∈Ư(n2+2n−3)

⇔n2+2n−3⋮n+1⇔n2+2n−3⋮n+1

⇔n(n+1)+n−3⋮n+1⇔n(n+1)+n−3⋮n+1

n(n+1)⋮n+1⇒n−3⋮n+1n(n+1)⋮n+1⇒n−3⋮n+1

⇔n+1−4⋮n+1⇔n+1−4⋮n+1

n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}

Ta có bảng sau:

n+1n+1 −1−1 11 −2−2 22 −4−4 44
nn −2−2 00 −3−3 11 −5−5 33

Vậy...

b) n2+2∈B(n2+1)n2+2∈B(n2+1)

⇔n2+2⋮n2+1⇔n2+2⋮n2+1

⇔n2+1+1⋮n2+1⇔n2+1+1⋮n2+1

n2+1⋮n2+1n2+1⋮n2+1 nên 1⋮n2+1⇒n2+1∈Ư(1)={−1;1}1⋮n2+1⇒n2+1∈Ư(1)={−1;1}

Ta có bảng sau:

n2+1n2+1 −1−1 11
nn √−2−2 (vô lý, vì 1 số ko âm mới có căn bậc hai)

00 (tm)

Vậy n=0n=0

c) 2n+3∈B(n+1)2n+3∈B(n+1)

⇔2n+3⋮n+1⇔2n+3⋮n+1

⇔2n+2+1⋮n+1⇔2n+2+1⋮n+1

⇔2(n+1)+1⋮n+1⇔2(n+1)+1⋮n+1

2(n+1)⋮n+12(n+1)⋮n+1 nên 1⋮n+1⇒n+1∈Ư(1)={−1;1}1⋮n+1⇒n+1∈Ư(1)={−1;1}

Ta có bảng sau:

n+1n+1 −1−1 11
nn −2−2 00
28 tháng 3 2019

quên nữa n thuộc Z tìm n

8 tháng 2 2018

a, \(2n+3=2\left(n+4\right)-5\) => vì 2n +3 chia hết cho n+4 =>

2(n+4)-5 chia hết cho n+4 hay 5 chia hết cho n+4 <=> n+4 thuộc Ư(5) 

Mà Ư(5)={1;-1;5;-5}

Giải ra ta đc n={-3;5;1;-9}

Các TH khác tương tự nha 

8 tháng 2 2018

b, \(n^2+3n+2=n\left(n-1\right)+4\left(n-1\right)+6\)

=> n-1 thuộc Ư(6)=...

Tương tự nk 

c, \(n^2+3=n\left(n-2\right)+2\left(n-2\right)+7\)

=> n-2 thuộc Ư(7)=...

26 tháng 2 2018

để n^2 + 3n + 2 chia hết cho n - 1 thì:

n^2 + 3(n - 1)+5 chia hết cho n-1

suy ra: 5 chia hết cho n-1 hay n-1 thuộc Ư(5)

Mà Ư(5)={1;5;-1;-5}

*Với n-1=1 suy ra n= 2

*Với n-1=5 suy ra n=6

*Với n-1=-1 suy ra n=0

*Với n-1=-5 suy ra n=-4

Vậy n thuộc {2;6;0;-4}

Câu b tương tự nha bn !!!

19 tháng 11 2017

a) Ta có:

\(2n+1⋮n-3\)

\(\Rightarrow\left(2n-6\right)+7⋮n-3\)

\(\Rightarrow2\left(n-3\right)+7⋮n-3\)

\(\Rightarrow7⋮n-3\)

\(\Rightarrow n-3\in\left\{1;7\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n-3=1\Rightarrow n=4\\n-3=7\Rightarrow n=10\end{matrix}\right.\)

Vậy n=4 hoặc n=10

b) Ta có:

\(n^2+3n-13⋮n+3\)

\(\Rightarrow n\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\)

\(\Rightarrow n+3\in\left\{1;13\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+3=1\Rightarrow n=-2\left(loai\right)\\n+3=13\Rightarrow n=10\end{matrix}\right.\)

Vậy n=10

c) Ta có:

\(n^2+3⋮n-1\)

\(\Rightarrow n^2-1+4⋮n-1\)

\(\Rightarrow\left(n-1\right)\left(n+1\right)+4⋮n-1\)

\(\Rightarrow n+1+4⋮n-1\)

\(\Rightarrow n+5⋮n-1\)

\(\Rightarrow\left(n-1\right)+6⋮n-1\)

\(\Rightarrow6⋮n-1\)

\(\Rightarrow n-1\in\left\{1;2;3;6\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=2\Rightarrow n=3\\n-1=3\Rightarrow n=4\\n-1=6\Rightarrow n=7\end{matrix}\right.\)

Vậy n=2 hoặc n=3 hoặc n=4 hoặc n=7

19 tháng 11 2017

a,\(2n+1=2n-6+7=2\left(n-3\right)+7\)

Do \(2\left(n-3\right)⋮n-3\)

\(\Rightarrow n-3\in\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow\left[{}\begin{matrix}n-3=1\\n-3=-1\\n-3=7\\n-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=4\\n=2\\n=10\\n=-4\end{matrix}\right.\)

28 tháng 1 2019

a) ( n2 - 3 ).( n2 - 36 ) = 0

<=> ( n2 - 3 ).( n - 6).( n + 6 ) = 0

<=> \(\orbr{\begin{cases}n-6=0\\n+6=0\end{cases}}\)   ( vì n2 - 3 luôn khác 0 và n thuộc Z )\(\Leftrightarrow\orbr{\begin{cases}n=6\\n=-6\end{cases}}\)

Vậy phương trình có tập nghiệm S = {-6;6}

b) ( n2 - 3 ).( n2 - 36 ) < 0

<=> \(\orbr{\begin{cases}n^2-3>0;n^2-36< 0\\n^2-3< 0;n^2-36>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}n^2>3;n^2< 36\\n^2< 3;n^2>36\left(voly\right)\end{cases}}\)

\(\Leftrightarrow3< n^2< 36\) . Mà n thuộc Z nên : \(n^2=4;9;16;25\)

\(\Leftrightarrow n=\pm2;\pm3;\pm4;\pm5\)

Vậy n = .................

c) Câu này làm tương tự câu a

28 tháng 1 2019

\(a;\left(n^2-3\right)\left(n^2-36\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}n^2=3\\n^2=36\end{cases}\Leftrightarrow\orbr{\begin{cases}n=\pm\sqrt{3}\left(loại\right)\\n=\pm6\end{cases}}}\)

\(c;\left(n+3\right)\left(n-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}n+3=0\\n-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}n=-3\\n=4\end{cases}}}\)

\(3n+2⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)

Vậy...........................

\(n^2+1⋮n-1\)

\(\Rightarrow\left(n+1\right)\left(n-1\right)⋮n-1\)

\(\Rightarrow\left(n+1\right)⋮n-1\)

\(\Rightarrow\left(n-1\right)+2⋮n-1\)

\(\Rightarrow2⋮n-1\)

\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow n\in\left(2;0;4;-3\right)\)

Vậy..........................

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)