Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n-1 nhận các giá trị là : 1 , -1 , 11, -11
suy ra n nhận các giá trị là : 2 , 0 , 12 , -10
a)4n-5 chia hết cho n
Vì 4n chia hết cho n
=>5 chia hết cho n.
=> n thuộc Ư(5)
=>n thuộc (1;-1;5;-5)
b)-11 là bội của n-1
=>n-1 thuộc Ư(-11)
=>n-1 thuộc (-1;1;-11;11)
=>n thuộc (0;2;-10;12)
c)2n-1 là ước của 3n+2
=>3n+2 chia hết cho 2n-1
=>2(3n+2) chia hết cho 2n-1
=>6n+4 chia hết cho 2n-1
=> 6n-3+7 chia hết cho 2n-1
Vì 6n-3 chia hết cho 2n-1
=>7 chia hết cho 2n-1
=> 2n-1 thuộc Ư(7)
=>2n-1 thuộc (1;-1;7;-7)
=>2n thuộc (0;2;8;-6)
=>n thuộc (0;1;4;-3)
a , Ta có : 4n - 5 chia hết cho n .
\(\Rightarrow\)n \(\in\)Ư (5) = { ± 1 ; ± 5 }
Vậy n \(\in\){ ± 1 ; ± 5 }
b , Ta có : - 11 chia hết cho n - 1
\(\Rightarrow\)n - 1 \(\in\)Ư (11) = { ± 1 ; ± 11 }
n - 1 | 1 | - 1 | 11 | - 11 |
n | 2 | 0 | 12 | - 10 |
Vậy n \(\in\) { 2 ; 0 ; 12 ; - 10 }
c , Ta có : 3n + 2 chia hết 2n - 1
\(\Rightarrow\)2 ( 3n + 2 ) chia hết 2n - 1
\(\Rightarrow\)6n + 4 chia hết 2n - 1
\(\Rightarrow\)3 ( 2n - 1 ) + 7 chia hết 2n - 1
\(\Rightarrow\)2n - 1 \(\in\)Ư (7) = { ± 1 ; ± 7 }
2n - 1 | 1 | - 1 | 7 | - 7 |
2n | 2 | 0 | 8 | - 6 |
n | 1 | 0 | 4 | - 3 |
Vậy n \(\in\){ 1 ; 0 ; 4 ; - 3 }
Gọi x là ƯC của n+3 và 2n+5
=> x là ƯC của 2(n+3)=2n+6 và 2n+5
=> x là Ư của (2n+6)-(2n+5) = 2n+6-2n-5=1
=> x=1
Vậy ƯC(n+3;2n+5)=1
học tốt
Tìm n thuộc Z sao cho n + 2 là ước của 2n + 19.
Ta có: n+2 là ước của 2n + 19 <=> 2n + 19 \(⋮\)n + 2
<=> 2(n + 2) +15 \(⋮\)n + 2
<=> 15 \(⋮\)n + 2
<=> n + 2 \(\varepsilon\)Ư(15) = { \(\pm\)1; \(\pm3;\pm5;\pm10\)}
Ta có bàng:
n + 2 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
n | -1 | -3 | 1 | -5 | 3 | -7 | 13 | -17 |
Vậy n = ......
Chúc bạn học tốt! Nếu đúng thì k cho mik vs nha!!!!!
Gọi d=(n+3;2n+5)
=> n+3 chia hết cho d và 2n+5 chia hết cho d
=> 2n+6 và 2n+5 đều chia hết cho d
=> (2n+6)-(2n+5) chia hết cho d => 1 chia hết cho d => d=1
=> ƯC(n+3;2n+5)={-1;1}
Giải:
Gọi a là ước chung của n+1 và 2n +5.
ta có n+ 1 chia hết cho a ; 2n+5 chia hết cho a
suy ra (2n +6) - ( 2n +5) = 2n + ( 6 - 5) chia hết cho a =>1 chia hết cho a
Vậy a =1
ta có
a. \(2n=2\left(n+1\right)-2\text{ là bội của }n+1\)khi \(2\text{ là bội của }n+1\)
\(\Leftrightarrow n+1\in\left\{\pm1,\pm2\right\}\Rightarrow n\in\left\{-3,-2,0,1\right\}\)
b. \(2n+3=2\left(n-2\right)+7\text{ là bội của }n-2\text{ khi 7 là bội của }n-2\)
\(\Leftrightarrow n-2\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-5,1,3,9\right\}\)