Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x.y-y+2x=5
x(y+2) - y + 2 = 5 + 2
x(y+2) - 1(y+2) = 7
(y+2)(x-1) = 7
=> y+2 và x-1 ∈ Ư(7)
đến đây bạn tự xét bảng là ra!
x(y+2) - y = 5
x(y+2)-y-2+2=5
x(y+2) -(y+2) +2 =5
(x-1)(y+2)=5-2=3
x-1 | 3 | 1 | -1 | -3 |
---|---|---|---|---|
y+2 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | -1 | 1 | -5 | -3 |
đê 2n+1 là ước của 10n+5 thì 10n+5 phai chia hết cho 2n+1.
ta có 10n+5=5(2n+1)
vậy 10n + 1 luôn chia hết cho 2n+1 với mọi n thuộc Z
Ta co :
10n+5(2n+1)
Vay 10n+1 luon chia het cho 2n+1 voi moi n thuoc Z
a) \(\frac{4n+1}{2n-1}=\frac{4n-2+3}{2n-1}=\frac{2.\left(2n-1\right)+3}{2n-1}\)
\(=2+\frac{3}{2n-1}\). Vì \(2\in Z\Rightarrow\frac{3}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(3\right)\)
\(\Rightarrow2n-1\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow2n\in\left\{-2;0;2;4\right\}\)
\(\Rightarrow n\in\left\{-1;0;1;2\right\}\)
b)\(\frac{2n+5}{n+2}=\frac{2n+4+1}{n+2}=\frac{2.\left(n+2\right)+1}{n+2}\)
\(=\frac{2.\left(n+2\right)}{n+2}+\frac{1}{n+2}=2+\frac{1}{n+2}\). Vì \(2\in Z\Rightarrow n+2\inƯ\left(1\right)\)
\(\Rightarrow n+2\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-3;-1\right\}\)
c) \(\frac{2n-3}{n-2}=\frac{2n-4+1}{n-2}=\frac{2.\left(n-2\right)+1}{n-2}\)
\(=\frac{2.\left(n-2\right)}{n-2}+\frac{1}{n-2}=2+\frac{1}{n-2}\)
Vì \(2\in Z\Rightarrow\frac{1}{n-2}\in Z\Rightarrow n-2\inƯ\left(1\right)\)
\(\Rightarrow n-2\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{1;3\right\}\)
Mình chỉ biết làm câu b nha:
Ta có: Vì 2n-1 là ước của 3n+2
=> 3n+2 chia hết cho 2n-1
=> 6n+4 chia hết cho 6n-3
Ta lại có: 6n+4 - (6n-3) = 7 chia hết cho 2n-1
=> 2n-1 là ước của 7 => 2n-1={1, 7}
Vậy n= {0, 3}
Câu a nha:
Ta có: 4n-5 chia hết cho n
Tương tự câu b
=> 4n-(4n-5) = 5 chia hết cho n
=> n là ước của 5
Vậy n={1, 5}
a/ Gọi d là ƯSC của n+5 và n+3 => n+5 và n+3 cùng chia hết cho d
=> (n+5)-(n+3)=2 chia hết cho d => d={-2;-1; 1; 2}
b/ Gọi d là ƯSC của n+2 và 2n+1
=> 2n+1 chia hết cho d
=> n+2 chia hết cho d => 2(n+2)=2n+4 cũng chia hết cho d
=> 2(n+2)-(2n+1)=3 cũng chia hết cho d => d={-3; -1; 1; 3}
Ta có: 4n-1=2(2n+1)-3
Vì 2(2n+1) chia hết cho 2n+1 nên để 4n-1 chia hết cho 2n+1 thì 3 phải chia hết cho 2n+1 hay 2n+1 là ước của 3
Mà ước của 3 là 1;-1;3;-3
+)Với 2n+1=1 thì n=0
+)Với 2n+1=-1 thì n=-1
+)Với 2n+1=3 thì n=1
+)Với 2n+1=-3 thì n=-2
Vậy với n=0;1;-1;-2 thì 4n-1 chia hết cho 2n+1