Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM định lý nhỏ Fermat:
Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Ta thấy \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) là tích 5 STN nhỏ
=> \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) chia hết cho 5
Mà \(5n\left(n-1\right)\left(n+1\right)\) chia hết cho 5
=> \(n^5-n\) chia hết cho 5
=> \(n^5-n+2\) chia 5 dư 2, mà không tồn tại SCP nào chia 5 dư 2
=> \(n^5-n+2\) không là số chính phương với mọi số nguyên n
Xét biểu thức \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)Dễ thấy \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích của 5 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2, một số chia hết cho 5 suy ra \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮10\)(*)
\(\left(n-1\right)n\left(n+1\right)\)là tích 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2 suy ra \(5\left(n-1\right)n\left(n+1\right)⋮10\)(**)
Từ (*) và (**) suy ra \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮10\)nên \(n^5-n\) có tận cùng bằng 0
Do đó \(n^5-n+2\)tận cùng bằng 2 mà số chính phương không tận cùng bằng 2 nên không tồn tại n để \(n^5-n+2\)là số chính phương
hahaha bọn mày ơi
vào trang chủ của : Edward Newgate đê
hắn bảo ta trẻ trâu chẳng lẽ hắn lớn trâu chắc :))
+) Xét n = 2k ( n chẵn) => 2n3; 2n2; 2n đều chia hết cho 4 ; 7 chia 4 dư 3
=> A chia cho 4 dư 3
Mà Số chính phương chia cho 4 chỉ dư 0 hoặc 1=> không có số n chẵn nào để A là số chính phương
+) Xét n lẻ : n = 2k + 1
A = 2n .(n2 + n + 1) + 7 = 2(2k +1).(4k2 + 4k + 1 + 2k + 1+ 1) + 7 = (4k + 2). (4k2 + 6k + 3) + 7
= 16k3 + 24k2 + 12k + 8k2 + 12k + 6 + 7
= 16k3 + 32k2 + 24k + 13
13 chia cho 8 dư 5 ; 16k3; 32k2; 24k chia hết cho 8 => A chia cho 8 dư 5
Mà số chính phương chia cho 8 dư 0 hoặc 1; 4 ( chứng minh dễ dàng bằng cách xét các trường hợp; 8m; 8m + 1; ..; 8m+ 7)
=> Không có số n lẻ nào để A là số chính phương
Vậy Không tồn tại số nguyên n để A là số chính phương
+) Xét n = 2k ( n chẵn) => 2n3; 2n2; 2n đều chia hết cho 4 ; 7 chia 4 dư 3
=> A chia cho 4 dư 3
Mà Số chính phương chia cho 4 chỉ dư 0 hoặc 1=> không có số n chẵn nào để A là số chính phương
+) Xét n lẻ : n = 2k + 1
A = 2n .(n2 + n + 1) + 7 = 2(2k +1).(4k2 + 4k + 1 + 2k + 1+ 1) + 7 = (4k + 2). (4k2 + 6k + 3) + 7
= 16k3 + 24k2 + 12k + 8k2 + 12k + 6 + 7
= 16k3 + 32k2 + 24k + 13
13 chia cho 8 dư 5 ; 16k3; 32k2; 24k chia hết cho 8 => A chia cho 8 dư 5
Mà số chính phương chia cho 8 dư 0 hoặc 1; 4 ( chứng minh dễ dàng bằng cách xét các trường hợp; 8m; 8m + 1; ..; 8m+ 7)
=> Không có số n lẻ nào để A là số chính phương
Vậy Không tồn tại số nguyên n để A là số chính phương
ta có n^3+n^2+n+1>n^3 (n^2+n+1>0)
mặt khác n^3+n^2+n+1=<(n+1)^3 tương đương 2n^2+2n >=0
suy ra n^2+n>=0 tuong duong n(n+1)>=0 hien nhien dung
vậy n^3<y<=(n+1)^3 để ý là số chính phương thì y=(n+1)^3 tức là n(n+1)=0
suy ra n=0;1
Có: n2 - n + 13 = 0
Có denta = (-1)2 - 4.1.13 = -12 < 0
=> pt vô nghiệm
Vậy k có giá trị nào của n thỏa pt trên