K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

em nghĩ bài này lớp 7 hay 8 gì đó chứ nhỉ,nhưng em ko chắc đâu:v Bài 2a thì em chịu

1/ Ta có: \(\frac{n^2+2n+11}{n+1}=\frac{\left(n+1\right)^2+10}{n+1}=n+1+\frac{10}{n+1}\)

\(\Rightarrow n+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

\(\Rightarrow n\in\left\{-11;-6;-3;-2;0;1;4;9\right\}\)

2/ b) \(\left(x-y\right)\left(x+y\right)=2018=2.1009=1009.2=1.2018=2018.1\)

TH1: \(\left\{{}\begin{matrix}x-y=2\\x+y=1009\end{matrix}\right.\Leftrightarrow2x=1011\Leftrightarrow x=\frac{1011}{2}\left(L\right)\) (do x thuộc Z)

TH2: \(\left\{{}\begin{matrix}x-y=1009\\x+y=2\end{matrix}\right.\Leftrightarrow2x=1011\Leftrightarrow x=\frac{1011}{2}\left(L\right)\)

(do x thuộc Z)

TH3: \(\left\{{}\begin{matrix}x-y=1\\x+y=2018\end{matrix}\right.\Leftrightarrow2x=2019\Leftrightarrow x=\frac{2019}{2}\) (L)

TH4: \(\left\{{}\begin{matrix}x-y=2018\\x+y=1\end{matrix}\right.\Leftrightarrow2x=2019\Leftrightarrow x=\frac{2019}{2}\left(L\right)\)

Vậy không tồn tại các số x, y thuộc Z thỏa mãn phương trình

16 tháng 7 2019

\(2,a;5^ynha\)

\(+,x=0\Rightarrow5^y=624+1=625=5^4\Rightarrow y=4\left(\text{thoa man}\right)\)

\(+,x\ne0\Rightarrow2^x+624\text{ chan mà:}5^y\text{ le}\Rightarrow\text{ loai}\)

\(x^2-y^2=2018\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\text{ là số chan mà:}x+y-\left(x-y\right)=2y\left(\text{ là số chan}\right)\Rightarrow\text{ x+y và: x-y cùng chan hoac cùng le mà:}\left(x+y\right)\left(x-y\right)=2018\Rightarrow\text{ x+y và: x-y cùng chan}\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\text{ mà:}2018\text{ không chia hết cho }4\text{ nên không tìm đ}ư\text{oc x,y thoa man đề bài}\)

a: \(\Leftrightarrow n+1+4⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)

b: \(\Leftrightarrow n+2-9⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{-1;-3;1;-5;7;-11\right\}\)

c: \(\Leftrightarrow2n-2+8⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)

NV
15 tháng 11 2018

1. Giả sử \(a-3⋮a^2+2\Rightarrow\dfrac{a-3}{a^2+2}=A\) \(\left(A\in Z;A\ne0\right)\)

\(\Rightarrow a-3=A.a^2+2A\Rightarrow A.a^2-a+2A+3=0\)

\(\Delta=1-4A\left(2A+3\right)\ge0\Rightarrow-8A^2-12A+1\ge0\)

\(\Rightarrow\dfrac{-3-\sqrt{11}}{4}\le A\le\dfrac{-3+\sqrt{11}}{4}\)

Mà A nguyên \(\Rightarrow A=0\) hoặc \(A=-1\)

\(A=0\Rightarrow a-3=0\Rightarrow a=3\)

\(A=-1\Rightarrow-a^2-a+1=0\) \(\Rightarrow\) pt ko có nghiệm nguyên

Vậy a=0 thì a-3 chia hết \(a^2+2\)

2. \(x^2-2y=1\Rightarrow2y=x^2-1=\left(x-1\right)\left(x+1\right)\)

Nếu x chẵn \(\Rightarrow x=2\Rightarrow\) y không phải số tự nhiên (loại)

Nếu x lẻ \(\Rightarrow x-1\)\(x+1\) đều là số chẵn \(\Rightarrow\left(x-1\right)\left(x+1\right)⋮4\)

Đặt \(\left(x-1\right)\left(x+1\right)=4k\) với \(k\in N;k\ge1\)

\(\Rightarrow2y=4k\Rightarrow y=2k\)

Nếu \(k=1\Rightarrow y=2\Rightarrow x^2=2y+1=5\) \(\Rightarrow\) x không phải số tự nhiên (loại)

Nếu \(k>1\) \(\Rightarrow\) y là số chẵn lớn hơn 2 \(\Rightarrow\) y không phải là số nguyên tố

\(\Rightarrow\)Không tồn tại cặp số nguyên tố (x;y) nào để \(x^2-2y=1\)

3. Nếu d=0 =>d chia hết cho 6. Xét d>0, d là STN

Ta luôn có \(p>2\) do nếu \(p=2\Rightarrow p+2d=2\left(d+1\right)\) là hợp số, vô lý

\(\Rightarrow\) p là số lẻ \(\Rightarrow d\) là số chẵn (vì nếu d lẻ thì p+d chẵn là hợp số) \(\Rightarrow d⋮2\)

TH1: \(p=3a+1\)

Nếu \(d=3b+1\Rightarrow p+2d=3a+1+6b+2=3\left(a+2b+1\right)⋮3\)

\(\Rightarrow\) vô lý (do giả thiết p+2d là số nguyên tố)

Nếu \(d=3b+2\Rightarrow p+d=3a+1+3b+2=3\left(a+b+1\right)⋮3\) vô lý

Vậy \(d=3b\Rightarrow d⋮3\Rightarrow d⋮6\)

TH2: \(p=3a+2\)

Nếu \(d=3b+1\Rightarrow p+d=3a+2+3b+1=3\left(a+b+1\right)⋮3\) (loại)

Nếu \(d=3b+2\Rightarrow p+2d=3a+2+6b+4=3\left(a+2b+2\right)⋮3\) (loại)

Vậy \(d=3b⋮3\Rightarrow d⋮6\)

Kết luận: nếu p, p+d, p+2d là số nguyên tố thì d chia hết cho 6

4. Đề sai. Ta lấy ví dụ n=3 \(\Rightarrow2^3+1=9\) là hợp số, nhưng \(2^3-1=7\) là số nguyên tố

Hoặc \(n=5...\)

13 tháng 1 2018

â/ \(-55⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(-55\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=55\\x-2=-1\\x-2=-55\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=57\\x=1\\x=-53\end{matrix}\right.\)

Vậy ...........

b/ \(x^2+2x-7⋮x+2\)

\(x+2⋮x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-7⋮x+2\\x^2+2x⋮x+2\end{matrix}\right.\)

\(\Leftrightarrow-7⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(-7\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=1\\x+2=-7\\x+2=-1\\x+2=7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\\x=-3\\x=5\end{matrix}\right.\)

Vậy .........

c/ \(\left(x-15\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-15=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-4\end{matrix}\right.\)

Vậy .........

d/ \(\left|3x-4\right|-12=13\)

\(\Leftrightarrow\left|3x-4\right|=25\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-4=25\\3x-4=-25\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{3}\\x=-7\end{matrix}\right.\)

Vậy ..

13 tháng 2 2017

1+x+x^2+x^3=(x+1)+x^2(x+1)=(x+1)(x^2+1)=y^2

với x=-1 có y=0 với x khác -1

có (x^2+1;x+1)=2=> do VP CP =>có hai trường hợp xẩy ra

TH1: \(\left(I\right)\left\{\begin{matrix}x+1=k^2\\x^2+1=t^2\end{matrix}\right.\)=> x=0 duy nhất => y=+-1

TH2: \(x^2+1=\left(x+1\right)\Leftrightarrow x^2-x=0=>x=0,1\)=>y=+-2

Kết luận: (x,y)=(-1,0);(0,+-1);(1,+-2)

a: \(\Leftrightarrow4n-3⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;1\right\}\)

b: \(\Leftrightarrow6n+10⋮2n-3\)

\(\Leftrightarrow2n-3\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{2;1;11;-8\right\}\)

29 tháng 7 2016

bài 2) 

theo đề ta có : \(\frac{2x+5}{x+2}=2+\frac{1}{x+2}\)

để 2x+5 chia hết x+2 thì :x+2 là Ư(1)={1;-1}

Xét TH:

x+2=1=>x=-1(loại)

x+2=-1=> x=-3 (loại)

vậy k có giá trị x nào là só tự nhiên để thỏa đề bài

 

30 tháng 7 2016

trả lời dễ hiểu nhé các bạn 

20 tháng 7 2016

a)Vì \(x:y:z=2:3:\left(-4\right)\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)

          Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y+z}{2-3+-4}=\frac{-125}{-5}=25\)

\(\Rightarrow\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{-4}=25\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=50\\y=75\\z=-100\end{cases}\)

Vậy x=50;y=75;z=-100

d)Vì 2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)(1)

       5y=7z\(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)(2)

                       Từ (1) và (2) suy ra:\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng dãy tỉ số bằng nhau ta có:

      \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{x}{21}=2\\\frac{y}{14}=2\\\frac{z}{10}=2\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=42\\y=28\\z=20\end{cases}\)

 

20 tháng 7 2016

giúp b, c với ạ

a: \(\Leftrightarrow x-2\in\left\{1;-1;19;-19\right\}\)

hay \(x\in\left\{3;1;21;-17\right\}\)

b: \(\Leftrightarrow2x+3\in\left\{1;-1;3;-3\right\}\)(vì x là số nguyên nên 2x+3 là số lẻ)

hay \(x\in\left\{-1;-2;0;-3\right\}\)

c: \(\Leftrightarrow x+1+4⋮x+1\)

\(\Leftrightarrow x+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{0;-2;1;-3;3;-5\right\}\)

d: \(\Leftrightarrow x+1⋮x+4\)

\(\Leftrightarrow x+4\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{-3;-5;-1;-7\right\}\)